分析 設(shè)圓錐的底面半徑為r,結(jié)合圓錐的表面積為π,它的側(cè)面展開圖是圓心角為120°的扇形,求出圓錐和母線,進而根據(jù)勾股定理可得圓錐的高.
解答 解:設(shè)圓錐的底面半徑為r,
∵它的側(cè)面展開圖是圓心角為120°的扇形,
∴圓錐的母線長為3r,
又∵圓錐的表面積為π,
∴πr(r+3r)=π,
解得:r=$\frac{1}{2}$,l=$\frac{3}{2}$,
故圓錐的高h(yuǎn)=$\sqrt{\frac{9}{4}-\frac{1}{4}}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$.
點評 本題考查的知識點是旋轉(zhuǎn)體,熟練掌握圓錐的幾何特征是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=($\sqrt{x}$)2 | B. | y=${a^{{{log}_a}x}}$ | C. | y=$\root{3}{{x}^{3}}$ | D. | y=$\frac{{x}^{2}}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com