已知點在直線上運動,則的最小值為  (    )
A.B.C.D.
A

試題分析:解法一:由于點在直線上,,令
,故當時,取最小值
解法二:將,即當取最小值時,也取到最小值,的幾何意義指的是點到點之間的距離,而點在直線,點到點的最短距離就是點到直線的距離,即點到直線的距離,故的最小值為.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

若不等式對一切恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)定義域為的函數(shù)滿足,當時,
(1)當時,求的解析式;
(2)當x∈時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
①設g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

下圖是一個二次函數(shù)的圖象.寫出的解集;

(2)求這個二次函數(shù)的解析式;
(3)當實數(shù)在何范圍內變化時,在區(qū)間 上是單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左右焦點分別為、,點是橢圓上任意一點,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果函數(shù)在區(qū)間上是減少的,那么實數(shù)的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)表示中的較大值,表示中的較小值,記得最小值為得最小值為,則
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案