【題目】已知函數(shù).

(1)求的單調區(qū)間;

(2)設,若對任意,均存在使得,求的取值范圍.

【答案】(1)見解析;(2).

【解析】

1.然后對分類討論求得函數(shù)的單調區(qū)間.
2,即為,令,則由已知在上有,從而求導確定函數(shù)的最值,從而由最值確定的取值范圍.

(1).

①當時,,

在區(qū)間上,;在區(qū)間,

的單調遞增區(qū)間是,單調遞減區(qū)間是.

②當時,

在區(qū)間上,;在區(qū)間,

的單調遞增區(qū)間是,單調遞減區(qū)間是.

③當時,,故的單調遞增區(qū)間是.

④當時,,在區(qū)間上,;區(qū)間,

的單調遞增區(qū)間是,單調遞減區(qū)間是.

(2)設,

由已知,在上有.

1

2

+

0

0

所以,

由(1)可知,

①當時,上單調遞增,

,

所以,,解得,故.

②當時,上單調遞增,在上單調遞減,

.

可知,,

所以,,

,

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是菱形,.

1)證明:平面平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標原點).

1)求橢圓的標準方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)時,設的兩個極值點為,,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的切線,則的最小值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學方法來代入某條數(shù)式的表示方式,比如,2n是平面直角坐標系上的一系列點,用函數(shù)來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點列比較接近.其中一種描述接近程度的指標是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標系上5個點的坐標數(shù)據(jù)如表:

x

1

3

5

7

9

y

12

4

12

若用一次函數(shù)來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時的函數(shù)解析式

若用二次函數(shù)來擬合題干表格中的數(shù)據(jù),求

請比較第問中的和第問中的,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?請至少寫出三條理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)是定義在上的奇函數(shù),當時,,則函數(shù)上的所有零點之和為(

A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的可導函數(shù)滿足,記的導函數(shù)為,當時恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示在四棱錐中,下底面為正方形,平面平面,為以為斜邊的等腰直角三角形,,若點是線段上的中點.

1)證明平面.

2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案