設(shè)函數(shù)f(x)的定義域是(0,+∞),且對(duì)任意的正實(shí)數(shù)x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1時(shí),f(x)>0.

(1)求的值;

(2)判斷y=f(x)在(0,+∞)上的單調(diào)性,并給出你的證明;

(3)解不等式f(x2)>f(8x-6)-1.

答案:
解析:

  解:(1)令xy=1,則可得f(1)=0,再令x=2,y,得f(1)=f(2)+f(),故f()=-1;2分

  (2)設(shè)0<x1x2,則f(x1)+f()=f(x2)即f(x2)-f(x1)=f(),

  ∵>1,故f()>0,即f(x2)>f(x1)故f(x)在(0,+∞)上為增函數(shù);6分

  (3)由f(x2)>f(8x-6)-1得f(x2)>f(8x-6)+f()=f[(8x-6)],

  故得x2>4x-3且8x-6>0,解得解集為{x|x<1或x>3};10分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年東城區(qū)示范校質(zhì)檢一理)(14分)

設(shè)函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)時(shí), (a為實(shí)數(shù)).

   (Ⅰ)求當(dāng)時(shí),f(x)的解析式;

   (Ⅱ)若上是增函數(shù),求a的取值范圍;

   (Ⅲ)是否存在a,使得當(dāng)時(shí),f(x)有最大值-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lgx,則滿足f(x)>0的x的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),并且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),有f(x)=x,則f(3.5)=____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x+1,則f()=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)(上海卷) 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時(shí),f(x)=lg x,則滿足f(x)>0

x的取值范圍是                  .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案