證明直線a(x+1)+b(y+1)=0與圓=2必定有公共點(diǎn).

答案:
解析:

  證 圓心(0,0)到直線的距離為,∵≥2ab,

∴2()≥

  ∴,即直線與圓必定有公共點(diǎn)且僅當(dāng)a=b時(shí),直線與圓相切.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-1(x≥1)的圖象是C1,曲線C2與C1關(guān)于直線y=x對(duì)稱(chēng).

(1)求曲線C2的方程y=g(x);

(2)設(shè)函數(shù)y=g(x)的定義域?yàn)镸,x1、x2∈M且x1≠x2,求證:|g(x1)-g(x2)|<|x1-x2|;

(3)設(shè)A、B是曲線C2上任意不同兩點(diǎn),證明直線AB與直線y=x必相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),如果存在一個(gè)正的常數(shù)a,使得定義域D內(nèi)的任意兩個(gè)不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,則稱(chēng)函數(shù)y=f(x)為D上的利普希茨I類(lèi)函數(shù).已知函數(shù)f(x)=x2-1(x≥1)的圖象是C1,函數(shù)y=g(x)的圖象C2與C1關(guān)于直線y=x對(duì)稱(chēng).

(1)求函數(shù)y=g(x)的解析式及定義域M;

(2)證明:函數(shù)y=g(x)為M上的利普希茨I類(lèi)函數(shù);

(3)若A、B為C2上兩點(diǎn),求證:直線AB與直線y=x相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)y=f(x),如果存在一個(gè)正的常數(shù)a,使得定義域D內(nèi)的任意兩個(gè)不等的值x1、x2都有|f(x1)-f(x2)|≤a|x1-x2|成立,則稱(chēng)函數(shù)y=f(x)為D上的利普希茨I類(lèi)函數(shù).已知函數(shù)f(x)=x2-1(x≥1)的圖象是C1,函數(shù)y=g(x)的圖象C2與C1關(guān)于直線y=x對(duì)稱(chēng).

(1)求函數(shù)y=g(x)的解析式及定義域M;

(2)證明:函數(shù)y=g(x)為M上的利普希茨I類(lèi)函數(shù);

(3)若A、B為C2上兩點(diǎn),求證:直線AB與直線y=x相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 月考題 題型:解答題

已知直線:x=my+1過(guò)橢圓C:的右焦點(diǎn)F,拋物線:的焦點(diǎn)為橢圓C的上頂點(diǎn),且直線交橢圓C于A、B兩點(diǎn),點(diǎn)A、F、B在直線g:x=4上的射影依次為點(diǎn)D、K、E。
(1)求橢圓C的方程;
(2)若直線交y軸于點(diǎn)M,且,當(dāng)m變化時(shí),探求的值是否為定值?若是,求出的值;否則,說(shuō)明理由;
(3)連接AE、BD,試探索當(dāng)m變化時(shí),直線AE與BD是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案