已知P(x,y)是直線kx+y+3=0(k>0)上一動點,PA,PB是圓C:x2+y2-4x-2y=0的兩條切線,A、B是切點,若四邊形PACB的最小面積是5,則k的值為( )
A.2
B.3
C.
D.
【答案】分析:先求圓的半徑,四邊形PACB的最小面積是2,轉(zhuǎn)化為△PBC的面積是1,求出切線長,再求PC的距離也就是圓心到直線的距離,可解k的值.
解答:解:圓C:x2+y2-4x-2y=0的圓心C(2,1),半徑是r=,
由圓的性質(zhì)知:S四邊形PACB=2S△PBC=5,
∵四邊形PACB的最小面積是,
∴S△PBC的最小值==rd(d是切線長),
∴d最小值=,
圓心到直線的距離就是PC的最小值,即==,
解得:k=3或k=-(與已知k>0矛盾,舍去),
則k的值為3.
故選B
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:切線長定理,點到直線的距離公式,以及圓的標準方程,熟練掌握定理及公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一青蛙從點A0(x0,y0)開始依次水平向右和豎直向上跳動,其落點坐標依次是Ai(xi,yi)(i∈N*),(如圖所示,A0(x0,y0)坐標以已知條件為準),Sn表示青蛙從點A0到點An所經(jīng)過的路程.
(1)若點A0(x0,y0)為拋物線y2=2px(p>0)準線上一點,點A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且A0(
1
2
1
2
)
,試寫出
lim
n→+∞
Sn
(不需證明);
(3)若點An(xn,yn)要么落在y=2
1+8x
-1
所表示的曲線上,要么落在y=2
1+8x
+1
所表示的曲線上,并且A0(0,4),求Sn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市閔行區(qū)七寶中學高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

一青蛙從點A(x,y)開始依次水平向右和豎直向上跳動,其落點坐標依次是Ai(xi,yi)(i∈N*),(如圖所示,A(x,y)坐標以已知條件為準),Sn表示青蛙從點A到點An所經(jīng)過的路程.
(1)若點A(x,y)為拋物線y2=2px(p>0)準線上一點,點A1,A2均在該拋物線上,并且直線A1A2經(jīng)過該拋物線的焦點,證明S2=3p.
(2)若點An(xn,yn)要么落在y=x所表示的曲線上,要么落在y=x2所表示的曲線上,并且,試寫出(不需證明);
(3)若點An(xn,yn)要么落在所表示的曲線上,要么落在所表示的曲線上,并且A(0,4),求Sn的表達式.

查看答案和解析>>

同步練習冊答案