【題目】如圖,在梯形中,,.

(1)求;

(2)平面內(nèi)點(diǎn)的上方,且滿足,求的最大值.

【答案】(1);(2)2.

【解析】分析:(1)中, ,中,,,即,從而可得結(jié)果;(2)中,由余弦定理得,

利用基本不等式可得結(jié)果.

詳解(1)∵DC∥AB,AB=BC,∴∠ACD=∠CAB=∠ACB.

△ACD,DC=AC=t,由余弦定理得

cos∠ACD=

△ACB,cos∠ACB=

t3-2t2+1=0,(t-1)(t2-t-1)=0,

解得t=1,t=

t=1與梯形矛盾,舍去t>0,

t=DC=

(2)(1)∠CAD=∠ADC=∠BCD=2∠ACD.

5∠ACD=180°,∠ACD=∠ACB=36°,

∠DPC=3∠ACB=108°.

△DPC,由余弦定理得DC2=DP2+CP2-2DP·CPcos∠DPC,

t2=DP2+CP2-2DP·CPcos108°

=(DP+CP)2-2DP·CP(1+cos108°)

=(DP+CP)2-4DP·CPcos254°

∵4DP·CP≤(DP+CP)2,(當(dāng)且僅當(dāng)DP=CP時(shí),等號(hào)成立.)

∴t2≥(DP+CP)2(1-cos254°)

=(DP+CP)2 sin254°

=(DP+CP)2 cos236°

=(DP+CP)2·

∴(DP+CP)2≤4,DP+CP≤2.

故當(dāng)DP=CP=1時(shí),DP+CP取得最大值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(x)=xlnx,g(x)=ax3-.

()求函數(shù)(x)的單調(diào)遞增區(qū)間和最小值;

()若函數(shù)y= (x)與函數(shù)y =g(x)的圖象在交點(diǎn)處存在公共切線,求實(shí)數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 為橢圓 上任一點(diǎn),, 為橢圓的焦點(diǎn),,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線 經(jīng)過點(diǎn) ,且與橢圓交于 , 兩點(diǎn),若直線 , 的斜率依次成等比數(shù)列,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)240名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題,測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了20名學(xué)生的答題數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如表:

(Ⅰ)根據(jù)題中數(shù)據(jù),估計(jì)中240名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

(Ⅱ)從抽樣的20名學(xué)生中隨機(jī)抽取2名學(xué)生,記這2名學(xué)生中第5題答對(duì)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅲ)試題的預(yù)估難度和實(shí)測(cè)難度之間會(huì)有偏差.設(shè)為第題的實(shí)測(cè)難度,請(qǐng)用設(shè)計(jì)一個(gè)統(tǒng)計(jì)量,并制定一個(gè)標(biāo)準(zhǔn)來判斷本次測(cè)試對(duì)難度的預(yù)估是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海輪以每小時(shí)30海里的速度航行,在點(diǎn)測(cè)得海面上油井在南偏東,海輪向北航行40分鐘后到達(dá)點(diǎn),測(cè)得油井在南偏東,海輪改為北偏東的航向再行駛80分鐘到達(dá)點(diǎn),則兩點(diǎn)的距離為(單位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長(zhǎng)為1,點(diǎn)是棱上的動(dòng)點(diǎn),是棱上一點(diǎn),.

(1)求證:;

(2)若直線平面,試確定點(diǎn)的位置,并證明你的結(jié)論;

(3)設(shè)點(diǎn)在正方體的上底面上運(yùn)動(dòng),求總能使垂直的點(diǎn)所形成的軌跡的長(zhǎng)度.(直接寫出答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,經(jīng)研究發(fā)現(xiàn)鮭魚的游速可以表示為函數(shù)y=log3,單位是m/s,θ是表示魚的耗氧量的單位數(shù).

(1)當(dāng)一條鮭魚的耗氧量是900個(gè)單位時(shí),它的游速是多少?

(2)計(jì)算一條魚靜止時(shí)耗氧量的單位數(shù)。

(3)某條鮭魚想把游速提高1 m/s,那么它的耗氧量的單位數(shù)是原來的多少倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形,并且的平分線平行,設(shè).

(1)試將長(zhǎng)方形的面積表示為的函數(shù);

2若將長(zhǎng)方形彎曲,使重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時(shí),求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個(gè)圓面作為圓柱的一個(gè)底面,請(qǐng)問是否可行?并說明理由.

(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長(zhǎng))

查看答案和解析>>

同步練習(xí)冊(cè)答案