精英家教網(wǎng)已知中心在原點(diǎn)、焦點(diǎn)在x軸上橢圓,離心率為
6
3
,且過(guò)點(diǎn)A(1,1)
(Ⅰ)求橢圓方程;
(Π)如圖,B為橢圓右頂點(diǎn),橢圓上點(diǎn)C與A關(guān)于原點(diǎn)對(duì)稱,過(guò)點(diǎn)A作兩條直線交橢圓P、Q(異于A、B),交x軸與P',Q',若|AP'|=|AQ'|,求證:存在實(shí)數(shù)λ,使得
PQ
BC
分析:(Ⅰ)先把橢圓方程設(shè)出來(lái),再利用離心率為
6
3
,且過(guò)點(diǎn)A(1,1)以及a2=b2+c2求出對(duì)應(yīng)a,b,c的值即可.
(Π)先求出直線BC的斜率,再利用條件|AP'|=|AQ'|,知道直線AP的斜率k與AQ的斜率互為相反數(shù),把直線AP的方程設(shè)出來(lái),于橢圓方程聯(lián)立,求出點(diǎn)P的坐標(biāo),同理求出點(diǎn)Q的坐標(biāo),只要直線PQ的斜率與直線BC的斜率相等即可證得結(jié)論.
解答:解:(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)
.離心率為
6
3
c
a
=
6
3
?
c2
a2
=
2
3

∵點(diǎn)A(1,1)在橢圓上,∴
1
a2
+
1
b2
=1②
又a2=b2+c2
解得
a2=4
b2=
4
3
c2=
8
3

故所求橢圓方程為
x2
4
+
3y2
4
=1
(Ⅱ)由A(1,1)得C(-1,1)
則kBC=
0-(-1)
2-(-1)
=
1
3

易知AP的斜率k必存在,設(shè)AP;y=k(x-1)+1,則AQ:y=-k(x-1)+1,
x2
4
+
3y2
4
=1
y=k(x-1)+1
得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0
由A(1,1)得x=1是方程(1+3k2)x2-6k(k-1)x+3k2-6k-1=0的一個(gè)根
由韋達(dá)定理得:xp=xp•1=
3k2-6k-1
1+3k2

以-k代k得xQ=
3k2+6k-1
1+3k2
故kPQ=
yP-yQ
xP-xQ
=
k(xP+xQ)-2k
xP-xQ
=
1
3

故BC∥PQ
即存在實(shí)數(shù)λ,使得
PQ
.
BC
點(diǎn)評(píng):本題綜合考查了直線與橢圓的位置關(guān)系以及向量共線問(wèn)題.直線與圓錐曲線的位置關(guān)系,由于集中交匯了直線,圓錐曲線兩章的知識(shí)內(nèi)容,綜合性強(qiáng),能力要求高,還涉及到函數(shù),方程,不等式,平面幾何等許多知識(shí),可以有效的考查函數(shù)與方程的思想,數(shù)形結(jié)合的思想,分類討論的思想和轉(zhuǎn)化化歸的思想,因此,這一部分內(nèi)容也成了高考的熱點(diǎn)和重點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線為mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一個(gè)值,使得雙曲線的離心率大于3的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的離心率為
3
2
,實(shí)軸長(zhǎng)為4,則雙曲線的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C,過(guò)點(diǎn)P(2,
3
)且離心率為2,則雙曲線C的標(biāo)準(zhǔn)方程為
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•合肥模擬)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線的方程為y=
1
2
x
,則此雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線的一條漸近線方程為
3
x-y=0
,則該雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案