【題目】已知函數(shù)f(x)=3sin()+3,xR.

1)用五點(diǎn)法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;(過程可以不寫,只需畫出圖即可)

2)求函數(shù)的單調(diào)區(qū)間;

3)寫出如何由函數(shù)y=sinx的圖象得到函數(shù)f(x)=3sin()+3的圖象.

【答案】1)答案見解析.(2)增區(qū)間為,減區(qū)間為.(3)答案見解析

【解析】

1)由0,,π,2π得到相應(yīng)的x的值,列表描點(diǎn),利用五點(diǎn)作圖法作圖即可;

2)利用正弦函數(shù)的單調(diào)性即可求解.

3)由函數(shù)y=Asin(ωx+φ)的圖象變換即可求解.

1f(x)=3sin()+3,xR

,π,,2π,得到相應(yīng)的x的值,列表如下:

x

0

π

2π

y

3

6

3

0

3

描點(diǎn),用光滑的曲線把各點(diǎn)連接,作圖如下:

2)由,kZ,

得:kZ,

可得其增區(qū)間為[4,4],kZ,

同理,由,kZ,

得:,kZ,

可得其減區(qū)間為[44],kZ.

3y=sinx向左平移個單位,得到y=sin(x),

再將縱坐標(biāo)不變,橫坐標(biāo)伸長為原來的2倍,得到y=sin(),

橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的3倍,得到y=3sin(),

最后向上平移3個單位得到y=3sin()+3的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,經(jīng)統(tǒng)計(jì)知年份x和儲蓄

存款y (千億元)具有線性相關(guān)關(guān)系,下表是該地某銀行連續(xù)五年的儲蓄存款(年底余額)

如下表(1):

年份x

2014

2015

2016

2017

2018

儲蓄存款y(千億元)

5

6

7

8

10

表(1

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,令

得到下表(2):

時(shí)間代號t

1

2

3

4

5

0

1

2

3

5

表(2

(1)由最小二乘法求關(guān)于t的線性回歸方程;

(2)通過(1)中的方程,求出y關(guān)于x的線性回歸方程;

(3)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

(附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從高三學(xué)生中抽取名學(xué)生參加數(shù)學(xué)競賽,成績(單位:分)的分組及各數(shù)據(jù)繪制的頻率分布直方圖如圖所示,已知成績的范圍是區(qū)間,且成績在區(qū)間的學(xué)生人數(shù)是人,

1的值;

2若從數(shù)學(xué)成績(單位:分)在的學(xué)生中隨機(jī)選取人進(jìn)行成績分析

列出所有可能的抽取結(jié)果;

設(shè)選取的人中,成績都在內(nèi)為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查觀眾對電視劇《風(fēng)箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調(diào)查活動.在參加此活動的甲、乙兩地觀眾中,各隨機(jī)抽取了8名觀眾對該電視劇評分做調(diào)查(滿分100分),被抽取的觀眾的評分結(jié)果如圖所示

(Ⅰ)計(jì)算:①甲地被抽取的觀眾評分的中位數(shù);

②乙地被抽取的觀眾評分的極差;

(Ⅱ)用頻率估計(jì)概率,若從乙地的所有觀眾中再隨機(jī)抽取4人進(jìn)行評分調(diào)查,記抽取的4人評分不低于90分的人數(shù)為,求的分布列與期望;

)從甲、乙兩地分別抽取的8名觀眾中各抽取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被抽取的觀眾評分低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,點(diǎn)在直線上,若的面積為10,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為

求橢圓方程;

橢圓內(nèi)接四邊形ABCD的對角線交于原點(diǎn),且,求四邊形ABCD周長的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的一個極值點(diǎn),求的最大值;

(2)若 ,都有 ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,E是棱的中點(diǎn),F是側(cè)面內(nèi)的動點(diǎn),且平面,給出下列命題:

點(diǎn)F的軌跡是一條線段;不可能平行;BE是異面直線;平面不可能與平面平行.

其中正確的個數(shù)是  

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P為曲線C上任意一點(diǎn), ,直線的斜率之積為

求曲線的軌跡方程;

Ⅱ)是否存在過點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案