已知線性回歸方程
?
y
=1+bx,若
.
x
=2,
.
y
=9,則b
=
4
4
分析:
.
x
=2,
.
y
=9
代入線性回歸方程,即可求解.
解答:解:將
.
x
=2,
.
y
=9
代入線性回歸方程可得9=1+2b,∴b=4
故答案為:4
點(diǎn)評(píng):本題考查線性回歸方程,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線性回歸方程
y
=1+bx
,若
.
x
=2
,
.
y
=9
,則b=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號(hào)為
①③④
①③④
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青島一模)給出以下命題:
①雙曲線
y2
2
-x2=1
的漸近線方程為y=±
2
x
;
②命題p:“?x∈R+,sinx+
1
sinx
≥2
”是真命題;
③已知線性回歸方程為
?
y
=3+2x
,當(dāng)變量x增加2個(gè)單位,其預(yù)報(bào)值平均增加4個(gè)單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤已知
2
2-4
+
6
6-4
=2
,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2
,
10
10-4
+
-2
-2-4
=2
,依照以上各式的規(guī)律,得到一般性的等式為
n
n-4
+
8-n
(8-n)-4
=2
,(n≠4)
則正確命題的序號(hào)為
①③⑤
①③⑤
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案