在△ABC中,已知AC=,A=135°,B=30°,則AB等于( )
A.
B.4
C.
D.
【答案】分析:先利用A,B求得C,進(jìn)而利用兩角和公式求得sinC的值,最后利用正弦定理求得BC.
解答:解:∵A=135°,B=30°,
∴C=15°
∴sin15°=sin(60°-45°)=sin60°cos45°-cos60°sin45°=
由正弦定理可知=
∴BC=•sinC=×=2-2
故選D
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用.考查了基礎(chǔ)知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長(zhǎng);
(2)求sinA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案