觀察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4

sin220°+cos250°+sin20°cos50°=
3
4
,
sin212°+cos242°+sin12°cos42°=
3
4

分析上述各式的共同特點(diǎn),請(qǐng)寫出一個(gè)能反映一般規(guī)律的等式
sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°
sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°
分析:觀察所給的等式,等號(hào)左邊是sin230°+cos260°+sin30°cos60°=
3
4
…規(guī)律應(yīng)該是sin2α+cos2(30°+α)+sinαcos(30°+α),右邊的式子:
3
4
,寫出結(jié)果.
解答:解:觀察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4
,
sin220°+cos250°+sin20°cos50°=
3
4
,
sin212°+cos242°+sin12°cos42°=
3
4

分析上述各式的共同特點(diǎn),左邊是二項(xiàng)的正弦和余弦的平方和加上正弦與余弦的積,其中一個(gè)角等于另一個(gè)加上30°,右邊都是
3
4

從而寫出一個(gè)能反映一般規(guī)律的等式 sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°,
故答案為:sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°.
點(diǎn)評(píng):本題考查歸納推理,考查觀察、分析、歸納的能力,從所給式子出發(fā),通過(guò)觀察、類比、猜想出一般規(guī)律,不需要證明結(jié)論,該題著重考查了類比的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察以下各等式:
sin230°+cos260°+sin30°cos60°=
3
4
,
sin220°+cos250°+sin20°cos50°=
3
4

sin245°+cos2105°-sin45°cos105°=
3
4

分析上述各式的共同特點(diǎn),請(qǐng)寫出一個(gè)能反映一般規(guī)律的等式
sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°
sin2α+cos2β+sinαcosβ=
3
4
,其中β=α+30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011--2012學(xué)年吉林省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

觀察以下各等式:

分析上述各式的共同特點(diǎn),猜想出反映一般規(guī)律的等式,并對(duì)等式的正確性作出證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡中學(xué)高一(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

觀察以下各等式:
,
,

分析上述各式的共同特點(diǎn),請(qǐng)寫出一個(gè)能反映一般規(guī)律的等式   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡中學(xué)高一(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

觀察以下各等式:
,


分析上述各式的共同特點(diǎn),請(qǐng)寫出一個(gè)能反映一般規(guī)律的等式   

查看答案和解析>>

同步練習(xí)冊(cè)答案