已知點(diǎn)M(1,2),函數(shù)C1:y=x2+1,過點(diǎn)M作C1的切線l,
(1)求切線l的方程;
(2)把函數(shù)C1的圖象向下平移1個(gè)單位得到曲線C2,求l與曲線C2圍成圖形的面積.
分析:(1)求出導(dǎo)數(shù)和切線的斜率,代入直線的點(diǎn)斜式方程,再化為一般式即可;
(2)由圖象平移求出C2:y=x2,再聯(lián)立方程求出交點(diǎn)的橫坐標(biāo),由定積分求出圍成圖形的面積.
解答:解:(1)由題意知M(1,2)在y=x2+1上,且 y′=2x,
∴kl=f′(1)=2,
∴切線的方程是y-2=2(x-1),即2x-y=0,
∴切線l的方程為2x-y=0,
(2)y=x2+1向下平移1個(gè)單位得到C2:y=x2,
y=x2
y=2x
得,x=0或x=2,
∴l(xiāng)與C2圍成圖形面積是:
S=
2
0
(2x-x2)dx
=(x2-
x3
3
)|
2
0
=22-
8
3
=
4
3
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義和直線方程,以及利用定積分知識(shí)求不規(guī)則圖形的面積,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(-1,2)在直線2ax-by+2=0(a>0,b>0)上,則
4
a
+
1
b
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(1,2),N(1,1),則直線MN的傾斜角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(1,2)和直線l:x-y=5.
(1)求以M為圓心,且與直線l相切的圓M的方程;
(2)過直線y=x+5上一點(diǎn)P作圓M的切線PA、PB,其中A、B為切點(diǎn),求當(dāng)四邊形PAMB的面積最小時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)寧市金鄉(xiāng)一中高二(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知點(diǎn)M(-1,2)在直線2ax-by+2=0(a>0,b>0)上,則的最小值是( )
A.4
B.6
C.8
D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案