已知是圓上一點(diǎn),求過點(diǎn)P的切線方程.

答案:略
解析:

解:如圖,設(shè)過點(diǎn)P的切線為l,連結(jié)OP,則OPl,又設(shè)Q(x,y)是直線l上異于點(diǎn)P的任意一點(diǎn),則

,∴,

,即

是圓上,∴

得切線l的方程


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、如圖,點(diǎn)O是已知線段AB上一點(diǎn),以O(shè)A為半徑的⊙O交線段AB于點(diǎn)C,以線段OB為直徑的圓與⊙O的一個交點(diǎn)為D,過點(diǎn)A作AB的垂線交BD的延長線于點(diǎn)M.
(1)求證:BD是⊙O的切線;
(2)若BC,BD的長度是關(guān)于x的方程x2-6x+8=0的兩個根,求⊙O的半徑;
(3)在上述條件下,求線段MD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計20分.請把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點(diǎn)使得BC=5,求線段AB的長.
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點(diǎn)坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知是圓上一點(diǎn),求過點(diǎn)P的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)專項(xiàng)復(fù)習(xí):創(chuàng)新題(1)(解析版) 題型:解答題

如圖,點(diǎn)O是已知線段AB上一點(diǎn),以O(shè)A為半徑的⊙O交線段AB于點(diǎn)C,以線段OB為直徑的圓與⊙O的一個交點(diǎn)為D,過點(diǎn)A作AB的垂線交BD的延長線于點(diǎn)M.
(1)求證:BD是⊙O的切線;
(2)若BC,BD的長度是關(guān)于x的方程x2-6x+8=0的兩個根,求⊙O的半徑;
(3)在上述條件下,求線段MD的長.

查看答案和解析>>

同步練習(xí)冊答案