精英家教網 > 高中數學 > 題目詳情

【題目】為了得到函數y=2sin( ),x∈R的圖象只需把函數y=2sinx,x∈R的圖象上所有的點(
A.向右平移 個單位長度,再把所有各點的橫坐標縮短到原來的
B.向左平移 個單位長度,再把所有各點的橫坐標伸長到原來的3倍
C.向左平移 個單位長度,再把所有各點的橫坐標縮短到原來的
D.向右平移 個單位長度,再把所有各點的橫坐標伸長到原來的3倍

【答案】D
【解析】解:把y=2sinx的圖象向右平移 個單位得y=2sin(x﹣ )的圖象, 再把所得圖象上點的縱坐標不變,橫坐標擴大到原來的3倍,得y=2sin( x﹣ )的圖象,
故選:D.
【考點精析】根據題目的已知條件,利用函數y=Asin(ωx+φ)的圖象變換的相關知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1,在平面多邊形中,四邊形為正方形, , ,沿著將圖形折成圖2,其中 , 的中點.

(1)求證: ;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函數f(x)的解析式;
(2)當x∈ 時,f(x)的最小值是﹣4,求此時函數f(x)的最大值,并求出相應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】原命題:“, 為兩個實數,若,則 中至少有一個不小于1”,下列說法錯誤的是( )

A. 逆命題為:若, 中至少有一個不小于1,則,為假命題

B. 否命題為:若,則 都小于1,為假命題

C. 逆否命題為:若, 都小于1,則,為真命題

D. ”是“ 中至少有一個不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為調查高一新生上學路程所需要的時間(單位:分鐘),從高一年級新生中隨機抽取100名新生按上學所需時間分組:第1組(0,10],第2組(10,20],第3組(20,30],第4組(30,40],第5組(40,50],得到的頻率分布直方圖如圖所示.

(1)根據圖中數據求a的值;
(2)若從第3,4,5組中用分層抽樣的方法抽取6名新生參與交通安全問卷調查,應從第3,4,5組各抽取多少名新生?
(3)在(2)的條件下,該校決定從這6名新生中隨機抽取2名新生參加交通安全宣傳活動,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知平面向量 、 滿足| |=| |=1, = ,若向量 滿足| + |≤1,則| |的最大值為(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,B=60°,AC= ,則AB+2BC的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答
(1)求函數f(x)= (x<﹣1)的最大值,并求相應的x的值.
(2)已知正數a,b滿足2a2+3b2=9,求a 的最大值并求此時a和b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:

xi(月)

1

2

3

4

5

yi(千克)

0.5

0.9

1.7

2.1

2.8


(1)在給出的坐標系中,畫出關于x,y兩個相關變量的散點圖.
(2)請根據上表提供的數據,用最小二乘法求出變量y關于變量x的線性回歸直線方程
(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式: = ,

查看答案和解析>>

同步練習冊答案