(本小題滿分14分)
已知:有窮數(shù)列{an}共有2k項(整數(shù)k≥2 ),a1=2 ,設(shè)該數(shù)列的前n項和為 Sn且滿足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通項公式;
(2)設(shè)bn=log2an ,求{bn}的前n項和Tn;
(3)設(shè)cn=,若a=2,求滿足不等式 + +…++≥時k的最小值.
(1)an=2·an-1(n=1,2…,2k);(2)Tn=n+(a>1,n=1,2,…,2k)(3)k≥6或k≤
(1)由Sn+1=aSn+2(n=1,2,…,2k-1) (1)
Sn=aSn-1+2(n=2,3,…,k) (2)……………………………2分
(1)-(2)得an+1=a·an(n=2,3,…,2k-1)
由(1)式S2=aS1+2,a1+a2=aS1+2……………………………………………………3分
解得a2=2a,因為
所以{an}是以2為首項,a為公比的等比數(shù)列,an=2·an-1(n=1,2…,2k)…………4分
(2)∵bn-bn-1=log2an-log2an-1=log2an-1log2=log2a (n=2,3…,2k)
∴{bn}是以b1=1為首項,以log2a(a>1)為公差的等差數(shù)列………………………6分
∴Tn===n+(a>1,n=1,2,…,2k)……………8分
(3)cn==1+=1+(n=1,2,…,2k)……………………………10分
當(dāng)cn≤時, n≤k+,n為正整數(shù),知n≤k時,cn<
當(dāng)n≥k+1時,cn>……………………………………………………………………11分
=(-c1)+(-c2)+…+(-ck)+(ck+1-)+…+(c2k-)
=(ck+1+ck+2+…+c2k)-(c1+c2+…+ck)
={[k+(k+1)+…+(2k-1)]+2k}-{[1+2+…+(k-1)]+k}
=[-]
=≥
即11k2-72k+36≥0,(11k-6)(k-6)≥0解得k≥6或k≤
所以滿足條件的k的最小值為6…………………………14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com