在等差數(shù)列{
an}中,
a8=
a11+6,則數(shù)列{
an}前9項(xiàng)的和
S9等于( ).
設(shè)等差數(shù)列{
an}的公差為
d,則
a1+7
d=
(
a1+10
d)+6,即
a1+4
d=
a5=12,∵
S9=
=9
a5=108.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知{
an}為等差數(shù)列,若
a3+
a4+
a8=9,則
S9=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在等差數(shù)列{an}中,a10<0,a11>0,且a11>|a10|,則{an}的前n項(xiàng)和Sn中最大的負(fù)數(shù)為前______項(xiàng)的和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=ln a3n+1,n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知數(shù)列{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=3,b1=1,a2=b2,3a5=b3,若存在常數(shù)u,v對(duì)任意正整數(shù)n都有an=3logubn+v,則u+v=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)
Sn為數(shù)列{
an}的前
n項(xiàng)和,若
(
n∈N
*)是非零常數(shù),則稱該數(shù)列為“和等比數(shù)列”;若數(shù)列{
cn}是首項(xiàng)為2,公差為
d(
d≠0)的等差數(shù)列,且數(shù)列{
cn}是“和等比數(shù)列”,則
d=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
下面是關(guān)于公差
d>0的等差數(shù)列{
an}的四個(gè)命題:
p1:數(shù)列{
an}是遞增數(shù)列;
p2:數(shù)列{
nan}是遞增數(shù)列;
p3:數(shù)列
是遞增數(shù)列;
p4:數(shù)列{
an+3
nd}是遞增數(shù)列.
其中的真命題為( ).
A.p1,p2 | B.p3,p4 |
C.p2,p3 | D.p1,p4 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知
Sn是數(shù)列{
an}的前
n項(xiàng)和,且
an=
Sn-1+2(
n≥2),
a1=2.
(1)求數(shù)列{
an}的通項(xiàng)公式.
(2)設(shè)
bn=
,
Tn=
bn+1+
bn+2+…+
b2n,是否存在最大的正整數(shù)
k,使得
對(duì)于任意的正整數(shù)
n,有
Tn>
恒成立?若存在,求出
k的值;若不存在,說(shuō)明理由.
查看答案和解析>>