【題目】在三棱錐中,平面平面,,.設(shè)D,E分別為PA,AC中點(diǎn).
(Ⅰ)求證:平面PBC;
(Ⅱ)求證:平面PAB;
(Ⅲ)試問在線段AB上是否存在點(diǎn)F,使得過三點(diǎn)D,E,F的平面內(nèi)的任一條直線都與平面PBC平行?若存在,指出點(diǎn)F的位置并證明;若不存在,請說明理由.
【答案】(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見解析.
【解析】
(Ⅰ)證明以DE∥平面PBC,只需證明DE∥PC;(Ⅱ)證明BC⊥平面PAB,根據(jù)線面垂直的判定定理,只需證明PA⊥BC,AB⊥BC;(Ⅲ)當(dāng)點(diǎn)F是線段AB中點(diǎn)時(shí),證明平面DEF∥平面PBC,可得平面DEF內(nèi)的任一條直線都與平面PBC平行.
(Ⅰ)證明:因?yàn)辄c(diǎn)E是AC中點(diǎn),點(diǎn)D為PA的中點(diǎn),所以.
又因?yàn)?/span>DE面PBC,PC面PBC,
所以DE∥平面PBC.
(Ⅱ)證明:因?yàn)槠矫?/span>PAC⊥面ABC,平面PAC∩平面ABC=AC,又PA平面PAC,PA⊥AC,
所以PA⊥面ABC,
因?yàn)锽C平面ABC,
所以PA⊥BC.
又因?yàn)?/span>AB⊥BC,且PA∩AB=A,
所以BC⊥面PAB.
(Ⅲ)
當(dāng)點(diǎn)F是線段AB中點(diǎn)時(shí),過點(diǎn)D,E,F的平面內(nèi)的任一條直線都與平面PBC平行.
取AB中點(diǎn)F,連EF,連DF.
由(Ⅰ)可知DE∥平面PBC.
因?yàn)辄c(diǎn)E是AC中點(diǎn),點(diǎn)F為AB的中點(diǎn),
所以EF∥BC.
又因?yàn)?/span>EF平面PBC,BC平面PBC,
所以EF∥平面PBC.
又因?yàn)?/span>DE∩EF=E,
所以平面DEF∥平面PBC,
所以平面DEF內(nèi)的任一條直線都與平面PBC平行.
故當(dāng)點(diǎn)F是線段AB中點(diǎn)時(shí),過點(diǎn)D,E,F所在平面內(nèi)的任一條直線都與平面PBC平行.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線以為焦點(diǎn),且過點(diǎn)
(1)求雙曲線與其漸近線的方程
(2)若斜率為1的直線與雙曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7, 8,9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了 20組隨機(jī)數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動員射擊4次至少擊中3次的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為1,點(diǎn)在邊上,點(diǎn)在邊上,.動點(diǎn)從出發(fā)沿直線向運(yùn)動,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)第一次碰到時(shí),與正方形的邊碰撞的次數(shù)為( )
A. 4B. 3C. 8D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)·商功》中闡述:“斜解立方,得兩壍堵。斜解壍堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,則對該幾何體描述:
①四個(gè)側(cè)面都是直角三角形;
②最長的側(cè)棱長為;
③四個(gè)側(cè)面中有三個(gè)側(cè)面是全等的直角三角形;
④外接球的表面積為.
其中正確的個(gè)數(shù)為( )
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1為某省2018年1~4月快遞業(yè)務(wù)量統(tǒng)計(jì)圖,圖2是該省2018年1~4月快遞業(yè)務(wù)收入統(tǒng)計(jì)圖,下列對統(tǒng)計(jì)圖理解錯(cuò)誤的是( )
A. 2018年1~4月的業(yè)務(wù)量,3月最高,2月最低,差值接近2000萬件
B. 2018年1~4月的業(yè)務(wù)量同比增長率均超過50%,在3月底最高
C. 從兩圖來看,2018年1~4月中的同一個(gè)月的快遞業(yè)務(wù)量與收入的同比增長率并不完全一致
D. 從1~4月來看,該省在2018年快遞業(yè)務(wù)收入同比增長率逐月增長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P與兩個(gè)定點(diǎn)O(0,0),A(3,0)的距離的比值為2,點(diǎn)P的軌跡為曲線C.
(1)求曲線C的軌跡方程
(2)過點(diǎn)(﹣1,0)作直線與曲線C交于A,B兩點(diǎn),設(shè)點(diǎn)M坐標(biāo)為(4,0),求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一動點(diǎn),圓心關(guān)于軸的對稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.
(1)求點(diǎn)的軌跡方程;
(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com