6名同學(xué)安排到3個(gè)社區(qū)A,B,C參加志愿者服務(wù),每個(gè)社區(qū)安排兩名同學(xué),其中甲同學(xué)必須到A社區(qū),乙和丙同學(xué)均不能到C社區(qū),則不同的安排方法種數(shù)為( )
A.12
B.9
C.6
D.5
【答案】分析:本題可以分為兩類進(jìn)行研究,一類是乙和丙之一在A社區(qū),另一在B社區(qū),二類是乙和丙在B社區(qū),計(jì)算出每一類的數(shù)據(jù),然后求其和即可
解答:解:由題意將問題分為兩類求解
第一類,若乙與丙之一在甲社區(qū),則安排種數(shù)為A21×A31=6種
第二類,若乙與丙在B社區(qū),則A社區(qū)沿缺少一人,從剩下三人中選一人,另兩人去C社區(qū),故安排方法種數(shù)為A31=3種
故不同的安排種數(shù)是6+3=9種
故選B
點(diǎn)評(píng):本題考點(diǎn)是計(jì)數(shù)原理的應(yīng)用,考查了分類與分步兩大計(jì)數(shù)原理及排列數(shù)公式,是計(jì)數(shù)原理中的基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、6名同學(xué)安排到3個(gè)社區(qū)A,B,C參加志愿者服務(wù),每個(gè)社區(qū)安排兩名同學(xué),其中甲同學(xué)必須到A社區(qū),乙和丙同學(xué)均不能到C社區(qū),則不同的安排方法種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市高三第二次教學(xué)質(zhì)量考試數(shù)學(xué)理卷 題型:選擇題

6名同學(xué)安排到3個(gè)社區(qū)A,B,C參加志愿者服務(wù),每個(gè)社區(qū)安排兩名同學(xué),其中甲同學(xué)必須到A社區(qū),乙和丙同學(xué)均不能到C社區(qū),則不同的安排方法種數(shù)為(   )

A.12      B.9       C.6      D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:杭州二模 題型:單選題

6名同學(xué)安排到3個(gè)社區(qū)A,B,C參加志愿者服務(wù),每個(gè)社區(qū)安排兩名同學(xué),其中甲同學(xué)必須到A社區(qū),乙和丙同學(xué)均不能到C社區(qū),則不同的安排方法種數(shù)為(  )
A.12B.9C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省杭州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

6名同學(xué)安排到3個(gè)社區(qū)A,B,C參加志愿者服務(wù),每個(gè)社區(qū)安排兩名同學(xué),其中甲同學(xué)必須到A社區(qū),乙和丙同學(xué)均不能到C社區(qū),則不同的安排方法種數(shù)為( )
A.12
B.9
C.6
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案