如圖,單擺從某點開始來回擺動,離開平衡位置O的距離Scm和時間ts的函數(shù)關(guān)系式為S=6sin(2πt+),那么單擺來回擺動一次所需的時間為(  )

(A)2πs (B)πs (C)0.5s (D)1s

 

D

【解析】單擺來回擺動一次所需的時間正好是函數(shù)的一個周期,T==1,故選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題

給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.

(1)求橢圓C的方程和其“準圓”的方程.

(2)P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,l1,l2分別交其“準圓”于點M,N.

①當P為“準圓”與y軸正半軸的交點時,l1,l2的方程;

②求證:|MN|為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

已知M(-2,0),N(2,0),則以MN為斜邊的直角三角形的直角頂點P的軌跡方程為(  )

(A)x2+y2=2 (B)x2+y2=4

(C)x2+y2=2(x≠±2) (D)x2+y2=4(x≠±2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:解答題

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當x=,f(x)的最大值為2.

(1)f(x)的解析式.

(2)在閉區(qū)間[,]上是否存在f(x)的對稱軸?如果存在求出其對稱軸.若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,為了研究鐘表與三角函數(shù)的關(guān)系,建立了如圖所示的坐標系,設(shè)秒針針尖位置P(x,y).若初始位置為P0(,),當秒針從P0(:此時t=0)正常開始走時,P的縱坐標y與時間t的函數(shù)關(guān)系為(  )

(A)y=sin(t+) (B)y=sin(-t-)

(C)y=sin(-t+) (D)y=sin(-t-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十四第三章第八節(jié)練習(xí)卷(解析版) 題型:填空題

某人站在60米高的樓頂A處測量不可到達的電視塔的高度,測得塔頂C的仰角為30°,塔底B的俯角為15°,已知樓底部D和電視塔的底部B在同一水平面上,則電視塔的高為  .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十四第三章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

某水庫大壩的外斜坡的坡度為,則坡角α的正弦值為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,平面內(nèi)的兩條相交直線OP1OP2將該平面分割成四個部分I,,,(不包含邊界).設(shè)=m+n,且點P落在第Ⅲ部分,則實數(shù)m,n滿足(  )

(A)m>0,n>0(B)m>0,n<0

(C)m<0,n>0(D)m<0,n<0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十二第三章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

已知y=f(x)是奇函數(shù),且圖象關(guān)于x=3對稱,f(1)=1,cosx-sinx=,f()=(  )

(A)-1 (B)0 (C)1 (D)2

 

查看答案和解析>>

同步練習(xí)冊答案