設(shè)橢圓C1的離心率為5/13,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為

A.(x/4)2-(y/3)2=1                B.(x/13)2-(y/5)2=1  

C.(x/3)2-(y/4)2=1                D.(x/13)2-(y/12)2=1

 

【答案】

A

【解析】橢圓C1焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,所以長(zhǎng)半軸長(zhǎng)是13,又離心率為5/13,故焦點(diǎn)是(5,0)(-5,0),若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8

所以,曲線C2的標(biāo)準(zhǔn)方程為(x/4)2-(y/3)2=1   。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4.設(shè)橢圓C1的離心率為
5
13
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
42
-
y2
32
=1
B、
x2
132
-
y2
52
=1
C、
x2
32
-
y2
42
=1
D、
x2
132
-
y2
122
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
7
15
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為30.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于10,則曲線C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
24
-
y2
25
=1
B、
x2
25
-
y2
24
=1
C、
x2
15
-
y2
7
=1
D、
x2
25
+
y2
24
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
513
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,求曲線C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C1的離心率為
5
13
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,若曲線C2上的點(diǎn)到C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值為8,則曲線C2的標(biāo)準(zhǔn)方程為( 。
A、
x2
16
-
y2
9
=1
B、
x2
169
-
y2
25
=1
C、
x2
9
-
y2
16
=1
D、
x2
169
-
y2
144
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案