已知函數(shù)f(x)=
33x-1
ax2+ax-3
的定義域?yàn)镽 則實(shí)數(shù)a的取值范圍是
{a|-12<a≤0}
{a|-12<a≤0}
分析:函數(shù)的定義域是實(shí)數(shù),推出分母不為0,對a分類a=0和a≠0討論利用△<0,求解即可得到結(jié)果.
解答:解:函數(shù)f(x)=
33x-1
ax2+ax-3
的定義域?yàn)镽,只需分母不為0即可,
所以a=0或
a≠0
△=a2-4a×(-3)<0

可得-12<a≤0,
故答案為:{a|-12<a≤0}.
點(diǎn)評:求函數(shù)的定義域時(shí)要注意:(1)當(dāng)函數(shù)是由解析式給出時(shí),其定義域是使解析式有意義的自變量的取值集合.(2)當(dāng)函數(shù)是由實(shí)際問題給出時(shí),其定義域的確定不僅要考慮解析式有意義,還要有實(shí)際意義(如長度、面積必須大于零、人數(shù)必須為自然數(shù)等).(3)若一函數(shù)解析式是由幾個(gè)函數(shù)經(jīng)四則運(yùn)算得到的,則函數(shù)定義域應(yīng)是同時(shí)使這幾個(gè)函數(shù)有意義的不等式組的解集.若函數(shù)定義域?yàn)榭占,則函數(shù)不存在.(4)對在同一對應(yīng)法則f 下的量“x”“x+a”“x-a”所要滿足的范圍是一樣的;函數(shù)g(x)中的自變量是x,所以求g(x)的定義域應(yīng)求g(x)中的x的范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,數(shù)列an滿足an=f(n)(n∈N*),且an是遞增數(shù)列,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-ax
,若f(x)在區(qū)間(0,1]上是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的圖象過點(diǎn)(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)該函數(shù)的圖象可由函數(shù)y=
2
sin4x(x∈R)
的圖象經(jīng)過怎樣的變換得出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|3-
1x
|,x∈(0,+∞)

(1)寫出f(x)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)a,b(0<a<b)使函數(shù)y=f(x)定義域值域均為[a,b],若存在,求出a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x-
π
3
)=sinx,則f(π)
等于( 。

查看答案和解析>>

同步練習(xí)冊答案