二次函數(shù)y=ax2+bx+c,若f(x1)=f(x2)(x1≠x2),則f(
x1+x2
2
)
=
 
(用a、b、c表示)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先把二次函數(shù)一般式轉(zhuǎn)化為頂點(diǎn)式:y=ax2+bx+c=a(x+
b
2a
)2+
4ac-b2
4a
,由f(x1)=f(x2)(x1≠x2),所以對(duì)稱軸為x=
x1+x2
2
x1+x2
2
=-
b
2a
,進(jìn)一步求出結(jié)果.
解答: 解:二次函數(shù)y=ax2+bx+c=a(x+
b
2a
)2+
4ac-b2
4a

由f(x1)=f(x2)(x1≠x2),
所以對(duì)稱軸為x=
x1+x2
2

x1+x2
2
=-
b
2a

f(
x1+x2
2
)
=
4ac-b2
4a

故答案為:
4ac-b2
4a
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):二次函數(shù)的對(duì)稱軸的應(yīng)用,二次函數(shù)一般式與頂點(diǎn)式的轉(zhuǎn)換,及相關(guān)的運(yùn)算問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)的綠化面積每年平均比上一年增長(zhǎng)10%,設(shè)經(jīng)過x年后,綠化面積與原綠化面積之比為y,則y=f(x)得圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax
x2-1
(a>0).
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)的單調(diào)性定義給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=|x+1|+|x-1|
(2)f(x)=
2x2+2x
x+1

(3)f(x)=
1-x2
+
x2-1

(4)f(x)=
1-x2
2-|x+2|

(5)f(x)=(x-1)
1+x
1-x

(6)f(x)=
x+3
0
-x+3
x<-1
|x|≤1
x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+cosx.
(Ⅰ)求函數(shù)g(x)=f(x)•f′(x)+[f(x)]2的周期和對(duì)稱軸;
(Ⅱ)若h(x)=(f(x)-sinx)cos(x-
π
3
),求使h(x)>
1+
3
4
成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

備受矚目的巴西世界杯正在如火如荼的進(jìn)行,為確保總決賽的順利進(jìn)行,組委會(huì)決定在位于里約熱內(nèi)盧的馬拉卡納體育場(chǎng)外臨時(shí)圍建一個(gè)矩形觀眾候場(chǎng)區(qū),總面積為72m2(如圖所示).要求矩形場(chǎng)地的一面利用體育場(chǎng)的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對(duì)面留一個(gè)長(zhǎng)度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/m.設(shè)該矩形區(qū)域的長(zhǎng)為x(單位:m),租用鐵欄桿的總費(fèi)用為y(單位:元)
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,并求出最小最小費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合S={x||x|<5},T={x|(x+7)(x-3)<0}.則S∩T=( 。
A、{x|-7<x<5 }
B、{x|3<x<5 }
C、{x|-5<x<3 }
D、{x|-7<x<-5 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),對(duì)任意的實(shí)數(shù)x都有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,則f(2013)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則實(shí)數(shù)a的取值范圍為( 。
A、(-24,7)
B、(-∞,-24)∪(7,+∞)
C、(-7,24)
D、(-∞,-7)∪(24,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案