如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線段AB上的兩點(diǎn),且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.現(xiàn)將△ADE,△CFB分別沿DE,CF折起,使A,B兩點(diǎn)重合與點(diǎn)G,得到多面體CDEFG.
(1)求證:平面DEG⊥平面CFG;
(2)求多面體CDEFG的體積.

【答案】分析:(1)判斷四邊形CDEF為矩形,然后證明EG⊥GF,推出CF⊥EG,然后證明平面DEG⊥平面CFG.
(2)在平面EGF中,過(guò)點(diǎn)G作GH⊥EF于H,求出GH,說(shuō)明GH⊥平面CDEF,利用求出體積.
解答:解:(1)證明:因?yàn)镈E⊥EF,CF⊥EF,所以四邊形CDEF為矩形,
由CD=5,DE=4,得GE==3,
由GC=4,CF=4,得FG==4,所以EF=5,
在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,
又因?yàn)镃F⊥EF,CF⊥FG,得CF⊥平面EFG,
所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.
(2)解:在平面EGF中,過(guò)點(diǎn)G作GH⊥EF于H,則GH==
因?yàn)槠矫鍯DEF⊥平面EFG,得GH⊥平面CDEF,
=16.
點(diǎn)評(píng):本題考查平面與平面垂直的判定,棱柱、棱錐、棱臺(tái)的體積的求法,考查邏輯推理能力,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:BC⊥平面ACFE;
(2)當(dāng)EM為何值時(shí),AM∥平面BDF?證明你的結(jié)論;
(3)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(Ⅰ)求證:BC⊥平面ACFE;
(Ⅱ)點(diǎn)M在線段EF上運(yùn)動(dòng),設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過(guò)O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形ABCD中,對(duì)角線AC和BD交于點(diǎn)O,E、F分別是AC和BD的中點(diǎn),分別寫(xiě)出
(1)圖中與
EF
、
CO
共線的向量;
(2)與
EA
相等的向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
(I)求證:BC⊥平面ACFE;
(II)若M為線段EF的中點(diǎn),設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

查看答案和解析>>

同步練習(xí)冊(cè)答案