【題目】在一次社會實踐活動中,某數(shù)學(xué)調(diào)研小組根據(jù)車間持續(xù)5個小時的生產(chǎn)情況畫出了某種產(chǎn)品的總產(chǎn)量(單位:千克)與時間(單位:小時)的函數(shù)圖像,則以下關(guān)于該產(chǎn)品生產(chǎn)狀況的正確判斷是( ).

A.在前三小時內(nèi),每小時的產(chǎn)量逐步增加

B.在前三小時內(nèi),每小時的產(chǎn)量逐步減少

C.最后一小時內(nèi)的產(chǎn)量與第三小時內(nèi)的產(chǎn)量相同

D.最后兩小時內(nèi),該車間沒有生產(chǎn)該產(chǎn)品

【答案】BD

【解析】

根據(jù)車間持續(xù)5個小時的生產(chǎn)總產(chǎn)量(單位:千克)與時間(單位:小時)的函數(shù)圖像,分別進(jìn)行判斷即可。

由該車間持續(xù)5個小時的生產(chǎn)總產(chǎn)量(單位:千克)與時間(單位:小時)的函數(shù)圖像,得:前3小時的產(chǎn)量逐步減少,故A錯,B正確;

后2小時均沒有生產(chǎn),故C錯,D正確。

故選:BD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列, ,其前項和為,滿足

)求的通項公式;

)記,求數(shù)列的前項和,并證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過拋物線與坐標(biāo)軸的三個交點.

(1)求圓的方程;

(2)經(jīng)過點的直線與圓相交于,兩點,若圓,兩點處的切線互相垂直,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,點,為拋物線上任意一點(異于原點),過點作圓的切線,為切點,則的最小值是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)和二次函數(shù)滿足:,

1)求的解析式;

2)若對于,,均有成立,求a的取值范圍;

3)設(shè),在(2)的條件下,討論方程的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,某旅行社為吸引游客去某風(fēng)景區(qū)旅游,推出如下收費標(biāo)準(zhǔn):若旅行團(tuán)人數(shù)不超過30,則每位游客需交費用600元;若旅行團(tuán)人數(shù)超過30,則游客每多1人,每人交費額減少10元,直到達(dá)到70人為止.

(1)寫出旅行團(tuán)每人需交費用(單位:元)與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;

(2)旅行團(tuán)人數(shù)為多少時,旅行社可以從該旅行團(tuán)獲得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的值域;

(2)若函數(shù)的最大值是,求的值;

(3)已知,若存在兩個不同的正數(shù),當(dāng)函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)a0a≠1)的圖象過點(0,﹣2),(2,0

1)求ab的值;

2)求x[1,2]時,求fx)的最大值與最小值.

3)求使成立的x范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , . 

1)求證:平面 平面

2)設(shè)上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案