下列敘述中其中正確的序號為:
②④
②④

①函數(shù)y=tanx是單調遞增函數(shù).
②函數(shù)y=x+
1x
是奇函數(shù),在區(qū)間(1,+∞)上是增函數(shù).
③函數(shù)y=sinx+cosx的最大值是2.
④二次函數(shù)y=ax2+bx+c是偶函數(shù)的條件是b=0.
分析:根據(jù)正切函數(shù)的性質判斷①中函數(shù)y=tanx進行判斷即可;利用奇偶性的定義看f(-x)和f(x)的關系易判斷函數(shù)y=x+
1
x
是奇函數(shù),利用導數(shù)易得它的單調增區(qū)間是(1,+∞);③可以化為y=Asin(ωx+φ)形式,結合正弦函數(shù)的圖象求最值;④題目條件:“二次函數(shù)y=ax2+bx+c(a≠0)是偶函數(shù),”根據(jù)二次函數(shù)的對稱性,得其對稱軸是y軸,從而求得b.
解答:解:對于①函數(shù)y=tanx在定義域內(nèi)為增函數(shù);在每一個單調區(qū)間是增函數(shù),定義域內(nèi)不是增函數(shù).故錯;
②中y=x+
1
x
,所以f(-x)=-f(-x),為奇函數(shù),而y′=1-
1
x2
>0,得x<-1或x>1,函數(shù)y=x+
1
x
在區(qū)間(1,+∞)上是增函數(shù),故②正確;
③函數(shù)y=sinx+cosx=
2
sin(x+
π
4
)∈[-
2
,
2
],有最大值
2
,故③錯誤;
④由題意,得二次函數(shù)的圖象關于y軸對稱,則對稱軸為x=-
b
2a
=0,則b=0,故④正確.
故答案為:②④.
點評:本題考查函數(shù)的值域、單調性和奇偶性等性質,是基礎知識、基本題型的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果X是一個離散型隨機變量,那么下列敘述中不正確的是(    )

A.X取的每一個可能值的概率都是非負實數(shù)

B.X取所有可能值的概率之和為1

C.X取某兩個可能值的概率等于分別取其中每個值的概率之和

D.X在某一范圍內(nèi)取值的概率大于它取這個范圍內(nèi)各個值的概率之和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

下列敘述中其中正確的序號為:________.
①函數(shù)y=tanx是單調遞增函數(shù).
②函數(shù)數(shù)學公式是奇函數(shù),在區(qū)間(1,+∞)上是增函數(shù).
③函數(shù)y=sinx+cosx的最大值是2.
④二次函數(shù)y=ax2+bx+c是偶函數(shù)的條件是b=0.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列敘述中其中正確的序號為:______.
①函數(shù)y=tanx是單調遞增函數(shù).
②函數(shù)y=x+
1
x
是奇函數(shù),在區(qū)間(1,+∞)上是增函數(shù).
③函數(shù)y=sinx+cosx的最大值是2.
④二次函數(shù)y=ax2+bx+c是偶函數(shù)的條件是b=0.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年寧夏石嘴山市光明中學高一(上)期末數(shù)學試卷(解析版) 題型:填空題

下列敘述中其中正確的序號為:   
①函數(shù)y=tanx是單調遞增函數(shù).
②函數(shù)是奇函數(shù),在區(qū)間(1,+∞)上是增函數(shù).
③函數(shù)y=sinx+cosx的最大值是2.
④二次函數(shù)y=ax2+bx+c是偶函數(shù)的條件是b=0.

查看答案和解析>>

同步練習冊答案