函數(shù)f(x)=Asin(ωx+φ)(其中數(shù)學(xué)公式)的圖象如圖所示,為了得到g(x)=sin2x的圖象,則只需將f(x)的圖象


  1. A.
    向右平移數(shù)學(xué)公式個(gè)長(zhǎng)度單位
  2. B.
    向右平移數(shù)學(xué)公式個(gè)長(zhǎng)度單位
  3. C.
    向左平移數(shù)學(xué)公式個(gè)長(zhǎng)度單位
  4. D.
    向左平移數(shù)學(xué)公式個(gè)長(zhǎng)度單位
A
分析:由已知中函數(shù)f(x)=Asin(ωx+φ)的圖象,我們易分析出函數(shù)的周期、最值,進(jìn)而求出函數(shù)f(x)=Asin(ωx+φ)的解析式,設(shè)出平移量a后,根據(jù)平移法則,我們可以構(gòu)造一個(gè)關(guān)于平移量a的方程,解方程即可得到結(jié)論.
解答:由已知中函數(shù)f(x)=Asin(ωx+φ)(其中)的圖象,
過(,0)點(diǎn),()點(diǎn),
易得:A=1,T=4()=π,即ω=2
即f(x)=sin(2x+φ),將()點(diǎn)代入得:
+φ=+2kπ,k∈Z又由
∴φ=
∴f(x)=sin(2x+),
設(shè)將函數(shù)f(x)的圖象向左平移a個(gè)單位得到函數(shù)g(x)=sin2x的圖象,
則2(x+a)+=2x
解得a=-
故將函數(shù)f(x)的圖象向右平移個(gè)長(zhǎng)度單位得到函數(shù)g(x)=sin2x的圖象,
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由函數(shù)f(x)=Asin(ωx+φ)的圖象確定其中解析式,函數(shù)f(x)=Asin(ωx+φ)的圖象變換,其中根據(jù)已知中函數(shù)f(x)=Asin(ωx+φ)的圖象,求出函數(shù)f(x)=Asin(ωx+φ)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有兩個(gè)函數(shù)f(x)=asin(kx+
π
3
),g(x)=btan(kx-
π
3
)(k>0),它們的周期之和為
3
2
π
且f(
π
2
)=g(
π
2
),f(
π
4
)
=-
3
g(
π
4
)+1
求這兩個(gè)函數(shù),并求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是函數(shù)f(x)=Asin(φx+φ)(其中A>0,φ>0,0<φ<π)的部分圖象,則其解析為
y=2sin(
1
2
x+
4
)
y=2sin(
1
2
x+
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的圖象與X軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為
π
2
,且圖象上一個(gè)最低點(diǎn)為M(
3
,-2

(Ⅰ)求f(x)的解析式.
(Ⅱ)求函教f(x)單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)的圖象的一部分如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)圖象的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2008)的值分別為( �。�

查看答案和解析>>

同步練習(xí)冊(cè)答案