已知橢圓C:+=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  )

(A) +=1 (B) +=1

(C) +=1 (D) +=1

 

【答案】

D

【解析】利用橢圓離心率的概念和雙曲線漸近線求法求解.

∵橢圓的離心率為,

==,

a=2b.

∴橢圓方程為x2+4y2=4b2.

∵雙曲線x2-y2=1的漸近線方程為x±y=0,

∴漸近線x±y=0與橢圓x2+4y2=4b2在第一象限的交點為,

∴由圓錐曲線的對稱性得四邊形在第一象限部分的面積為

b×b=4,

b2=5,

a2=4b2=20.

∴橢圓C的方程為+=1.

故選D.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和雙曲線C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,給出下列命題:
①對于任意的正實數(shù)λ1,曲線C1都有相同的焦點;
②對于任意的正實數(shù)λ1,曲線C1都有相同的離心率;
③對于任意的非零實數(shù)λ2,曲線C2都有相同的漸近線;
④對于任意的非零實數(shù)λ2,曲線C2都有相同的離心率.
其中正確的為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(07年陜西卷) (14分)

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:=1()的離心率為,短軸一個端點到右焦點的距離為.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于、兩點,坐標原點到直線的距離為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復(fù)習提分訓(xùn)練22練習卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為,k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:山東省濟南市2010屆高三第二次模擬考試數(shù)學文 題型:選擇題

(本小題滿分12分)

       已知橢圓C: +=1(a>b>0)的離心率e=,且橢圓經(jīng)過點N(2,-3).

   (1)求橢圓C的方程;

   (2)求橢圓以M(-1,2)為中點的弦所在直線的方程.

 

查看答案和解析>>

同步練習冊答案