(2013•重慶)在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.若極坐標方程為ρcosθ=4的直線與曲線
x=t2
y=t3
(t為參數(shù))相交于A,B兩點,則|AB|=
16
16
分析:先將直線極坐標方程ρcosθ=4化成直角坐標方程,再代入曲線
x=t2
y=t3
(t為參數(shù))中得A,B兩點的直角坐標,最后利用兩點間的距離公式即可得出|AB|.
解答:解:將直線極坐標方程ρcosθ=4化成直角坐標方程為x=4,代入曲線
x=t2
y=t3
(t為參數(shù))中得A,B兩點的直角坐標為(4,8),(4,-8),
則|AB|=16.
故答案為:16.
點評:本題考查參數(shù)方程、極坐標方程、直角坐標方程間的轉(zhuǎn)化,兩點間的距離公式,考查轉(zhuǎn)化、計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,且a2=b2+c2+
3
bc.
(Ⅰ)求A;
(Ⅱ)設(shè)a=
3
,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時B的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖是某公司10個銷售店某月銷售某產(chǎn)品數(shù)量(單位:臺)的莖葉圖,則數(shù)據(jù)落在區(qū)間[22,30)內(nèi)的概率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)在平面上,
AB1
AB2
|
OB1
|=|
OB2
|
=1,
AP
=
AB1
+
AB2
.若|
OP
|<
1
2
,則|
OA
|的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,且a2+b2+
2
ab=c2
(1)求C;
(2)設(shè)cosAcosB=
3
2
5
,
cos(α+A)cos(α+B)
cos2α
=
2
5
,求tanα的值.

查看答案和解析>>

同步練習冊答案