設集合A={-2,0,3,4},B={x|x2-2x-3=0},則A∩B=( 。
A、{0}B、{3}
C、{0,2}D、{0,2,4}
考點:交集及其運算
專題:集合
分析:利用交集定義求解.
解答: 解:∵集合A={-2,0,3,4},B={x|x2-2x-3=0}={-1,3},
∴A∩B={3}.
故選:B.
點評:本題考查交集的求法,解題時要認真審題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

x=(a+3)(a-5)與y=(a+2)(a-4)的大小關系是( 。
A、x>yB、x=y
C、x<yD、不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中為真命題的是(  )
A、若數(shù)列{an}為等比數(shù)列的充要條件是an2=an-1•an+1
B、“a=1是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
C、若命題p:“?x∈R,x2-x-1>0”,則命題的否定為:“?x∈R,x2-x-1≤0”
D、直線a,b為異面直線的充要條件是直線a,b不相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

-401是等差數(shù)列-5,-9,-13…的第(  )項.
A、98B、99
C、100D、101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程2x+x=5的根所在的區(qū)間為( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知F1,F(xiàn)2分別是橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,橢圓G與拋物線y2=-8x有一個公共的焦點,且過點(-2,
2
).
(Ⅰ)求橢圓G的方程;
(Ⅱ)設直線l與橢圓G相交于A、B兩點,若
OA
OB
(O為坐標原點),試判斷直線l與圓x2+y2=
8
3
的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=
ax
x2+1
+2a,g(x)=alnx-x+a.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)求證:對于任意的x1,x2∈(0,e),都有f(x1)>g(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,點D是BC的中點.
(Ⅰ)求證:A1B∥平面AC1D
(Ⅱ)求點B到平面AC1D的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為4
2
,且與橢圓
x2
2
+
y2
4
=1有相同的離心率.
(Ⅰ)求橢圓M的方程;
(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與M有兩個交點A、B,且
OA
OB
?若存在,寫出該圓的方程,并求|
AB
|的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案