已知中,,若該三角形有兩解,則的取值范圍是       

 

【答案】

【解析】解:由余弦定理可得:4=c2+x2-2cx×cos45°∴c2- 2 xc+x2-4=0

∵解此三角形有兩解,∴方程有兩個不等的正根∴△=2x2-4(x2-4)>0,且x2-4>0, x>0∴x2-8>0,且x2-4>0,x>0∴2<x<2故答案為:2<x<2

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是
①④⑤
①④⑤
(注:把你認為是正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江大慶實驗中學(xué)高二上學(xué)期開學(xué)考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

 已知ABC中,,若該三角形有兩個解,則x的取值范圍是_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:填空題

已知的內(nèi)角的對邊分別為,下列說法中:

   ①在中,,若該三角形有兩解,則取值范圍是;

   ②在中,若,則的外接圓半徑等于

   ③在中,若,,則的內(nèi)切圓的半徑為1;

   ④在中,若,則BC邊的中線

其中正確命題的序號是               

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號是______(注:把你認為是正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案