精英家教網 > 高中數學 > 題目詳情
已知雙曲線的焦點在x軸上,且a+c=9,b=3,則它的標準方程是
x2
16
-
y2
9
=1
x2
16
-
y2
9
=1
分析:先確定c-a=1,再求出a,即可得到雙曲線的標準方程.
解答:解:因為b=3,a+c=9,所以c2-a2=(c+a)(c-a)=9,
所以c-a=1,
所以c=5,a=4,
所以雙曲線的標準方程是
x2
16
-
y2
9
=1

故答案為:
x2
16
-
y2
9
=1
點評:本題考查雙曲線的標準方程,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知雙曲線的焦點在x軸上,且過點A(1,0)和B(-1,0),P是雙曲線上異于A、B的任一點,如果△APB的垂心H總在雙曲線上,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

過橢圓
x2
4
+
y2
2
=1
的右焦點作x軸的垂線交橢圓于A、B兩點,已知雙曲線的焦點在x軸上,對稱中心在坐標原點且兩條漸近線分別過A、B兩點,則雙曲線的離心率是(  )
A、
2
2
B、
6
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

過橢圓的右焦點作x軸的垂線交橢圓于A、B兩點,已知雙曲線的焦點在x軸上,對稱中心在坐標原點且兩條漸近線分別過A、B兩點,則雙曲線的離心率e為(  )

A.                         B.                         C.                            D.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江西省宜春市上高二中高二(下)第五次月考數學試卷(理科)(解析版) 題型:選擇題

過橢圓的右焦點作x軸的垂線交橢圓于A、B兩點,已知雙曲線的焦點在x軸上,對稱中心在坐標原點且兩條漸近線分別過A、B兩點,則雙曲線的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案