12.已知函數(shù)f(x)=x2+ax+4,若對任意的x∈(0,2],f(x)≤6恒成立,則實數(shù)a的最大值為( 。
A.-1B.1C.-2D.2

分析 根據(jù)題意,可以將a分離出來,然后轉(zhuǎn)化為求函數(shù)的最值問題來解.

解答 解:若不等式x2+ax+4≤6對一切x∈(0,2]恒成立,
即a≤$\frac{-{x}^{2}+2}{x}$,x∈(0,2]恒成立.
令f(x)=$\frac{-{x}^{2}+2}{x}$=-x+$\frac{2}{x}$,x∈(0,2].
該函數(shù)在(0,2]上遞減,
所以f(x)min=f(2)=-1.
則要使原式恒成立,只需a≤-1即可.
故a的最大值為-1.
故選:A.

點評 本題考查了不等式恒成立問題的基本思路,一般是轉(zhuǎn)化為函數(shù)的最值問題來解,求參數(shù)范圍時,能分離參數(shù)的盡量分離參數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知△ABC中,BC=2,G為△ABC的重心,且滿足AG⊥BG,則△ABC 的面積的最大值為$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知關(guān)于x的不等式x2-4ax+3a2<0(a<0)的解集為(x1,x2),則${x_1}+{x_2}+\frac{a}{{{x_1}{x_2}}}$的最大值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$-\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在三角形ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,若acosA=bcosB,則三角形ABC一定是(  )三角形.
A.直角B.等邊C.鈍角D.等腰或直角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=$\frac{{\sqrt{{{log}_{\frac{1}{2}}}(x+1)}}}{3x+1}$的定義域是( 。
A.[-1,+∞)B.(-1,+∞)C.$({-1,-\frac{1}{3}})∪({-\frac{1}{3},+∞})$D.$({-1,-\frac{1}{3}})∪({-\frac{1}{3},0}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)$\overrightarrow a,\overrightarrow b$是兩個非零向量,且$|\overrightarrow a|=|\overrightarrow b|$=$|\overrightarrow a+\overrightarrow b|=2$,則向量$\vec b•(\vec a-\vec b)$為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知,如圖,空間四邊形ABCD中,E、F分別是AB、AD的中點,求證:EF∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求值:log23•log34+(log224-log26+6)${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點G是△ABC的重心,A(0,-1),B(0,1).在x軸上有一點M,滿足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的頂點坐標(biāo)為A(x1,y1),B(x2,y2),C(x3,y3),則該三角形的重心坐標(biāo)為G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求點C的軌跡E的方程;
(2)若斜率為k的直線l與(1)中的曲線E交于不同的兩點P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,試求斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案