3.已知橢圓${C_1}:\frac{x^2}{9}+\frac{y^2}{5}=1$與雙曲線${C_2}:{x^2}-\frac{y^2}{3}=1$,設(shè)C1與C2在第一象限的交點(diǎn)為P,則點(diǎn)P到橢圓左焦點(diǎn)的距離為4.

分析 確定橢圓、雙曲線共焦點(diǎn),再結(jié)合橢圓、雙曲線的定義,即可求得結(jié)論.

解答 解:設(shè)橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,由題意,橢圓、雙曲線共焦點(diǎn),則
|PF1|+|PF2|=6,|PF1|-|PF2|=2
∴|PF1|=4
故答案為:4

點(diǎn)評(píng) 本題考查橢圓、雙曲線的定義,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f (x)=$\left\{{\begin{array}{l}{x-3,x≥10}\\{f[f(x+7)],x<10}\end{array}}\right.$,則f(6)的值( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,點(diǎn)(2,1)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)直線l與圓O:x2+y2=2相切,與橢圓C相交于P,Q兩點(diǎn).
①若直線l過橢圓C的右焦點(diǎn)F,求△OPQ的面積;
②求證:OP⊥OQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2+blnx和$g(x)=\frac{x-10}{x-4}$的圖象在x=5處的切線互相平行.
(1)求b值;
(2)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,1),B(7,-1),C(-2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為D,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知橢圓C的中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合;過點(diǎn)M(1,1)且斜率為$-\frac{1}{2}$的直線交橢圓C于A、B兩點(diǎn),且M是線段AB的中點(diǎn),則橢圓C的方程為$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=x2-2x+1(x≥1)的反函數(shù)f-1(x)=( 。
A.1+$\sqrt{x}$B.1±$\sqrt{x}$C.1-$\sqrt{x}$D.$\sqrt{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中,最小值為4的是(  )
A.y=log3x+4logx3B.y=ex+4e-x
C.y=sinx+$\frac{4}{sinx}$(0<x<π)D.y=x+$\frac{4}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.冪函數(shù)$f(x)=({m^2}-m-1){x^{{m^2}+2m-3}}$在(0,+∞)上為減函數(shù),則m的取值是( 。
A.m=2B.m=-1C.m=2或m=-1D.-3≤m≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案