已知橢圓C=1(ab>0)經(jīng)過點A,且離心率e.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于MN兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)
設(shè)橢圓)經(jīng)過點,其離心率與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;(注意橢圓的焦點在軸上哦!)
(Ⅱ) 動直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:的左、右焦點為,其上頂點為.已知是邊長為的正三角形.
(1)求橢圓C的方程;  
(2) 過點任作一直線交橢圓C于
點,記若在線段上取一點使得,試判斷當(dāng)直線運動時,點是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題10分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求橢圓的方程;
(2)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P是橢圓上的點,F(xiàn)1、F2是兩個焦點,則|PF1|·|PF2|的最大值與最小值之差是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知是橢圓的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足為坐標原點),,若橢圓的離心率等于
(1)求直線AB的方程;  (2)若的面積等于,求橢圓的方程;
(3)在(2)的條件下,橢圓上是否存在點M使得的面積等于?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P為橢圓=1上任意一點,F1F2為左、右焦點,如圖所示.
(1)若PF1的中點為M,求證:|MO|=5-|PF1|;
(2)若∠F1PF2=60°,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標, 若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案