14.已知函數(shù)$f(x)=sin({wx+ϕ}),({w>0,|ϕ|<\frac{π}{2}})$,其相鄰兩個(gè)最高點(diǎn)之間的距離是π,且函數(shù)$f({x+\frac{π}{12}})$是偶函數(shù),下列判斷正確的是(  )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在$[{\frac{3π}{4},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{7π}{12}$對(duì)稱
D.函數(shù)f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{12},0})$對(duì)稱-

分析 根據(jù)題意,求出函數(shù)f(x)的解析式,再判斷選項(xiàng)中的命題是否正確即可.

解答 解:函數(shù)f(x)=sin(ωx+φ)圖象的相鄰兩個(gè)最高點(diǎn)之間的距離是π,
∴函數(shù)f(x)的周期為T=π,A錯(cuò)誤;
∵ω>0,∴ω=2,
∴函數(shù)f(x+$\frac{π}{12}$)的解析式為:
f(x)=sin[2(x+$\frac{π}{12}$)+φ]=sin(2x+$\frac{π}{6}$+φ),
又函數(shù)f(x+$\frac{π}{12}$)是偶函數(shù),
∴$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,
又|φ|<$\frac{π}{2}$,解得φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$);
當(dāng)x∈$[{\frac{3π}{4},π}]$時(shí),2x+$\frac{π}{3}$∈[$\frac{3π}{2}$+$\frac{π}{3}$,2π+$\frac{π}{3}$],f(x)是單調(diào)增函數(shù),B正確;
當(dāng)x=-$\frac{7π}{12}$時(shí),2x+$\frac{π}{3}$=-$\frac{5π}{6}$,f(x)的圖象不關(guān)于直線$x=-\frac{7π}{12}$對(duì)稱,C錯(cuò)誤;
當(dāng)x=$\frac{π}{12}$時(shí),2x+$\frac{π}{3}$=$\frac{π}{2}$,f(x)≠0,f(x)的圖象不關(guān)于點(diǎn)$({\frac{π}{12},0})$對(duì)稱,D錯(cuò)誤.
故選:B.

點(diǎn)評(píng) 本題考查了求正弦型函數(shù)的解析式以及函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={x|x2-4x+3≤0},集合B=$\left\{{x\left|{\frac{x-2}{x+1}>0}\right.}\right\}$,則A∪∁RB=( 。
A.[-1,3]B.[1,2]C.(-1,3]D.(-∞,-1)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.?dāng)?shù)列{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),記Tn=a1+a2•4+a3•42+…+an•4n-1,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得5Tn-4n•an=( 。
A.nB.n2C.2n2D.n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)  f(x)=$\left\{\begin{array}{l}\frac{1}{x+1}-3,x∈(-1,0]\\ x,x∈(0,1]\end{array}$,且g(x)=f(x)-mx-m在(-1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+xy(x∈R),f(1)=1,則f(3)=( 。
A.-3B.3C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+y-2≥0}\\{y≥0}\\{kx+y-3k≤0}\end{array}\right.$且目標(biāo)函數(shù)z=y-x的最大值是4,則k等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.公路陡坡警示牌如圖所示,其中“3.8%”表示這段道路的橫截面斜坡所在直線的斜率,這段斜坡的傾斜角的大小為arctan0.038度.(答案保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.拋物線y2=2x的焦點(diǎn)坐標(biāo)是($\frac{1}{2}$,0),準(zhǔn)線方程是x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等差數(shù)列{an}中,前n項(xiàng)和為Sn,a1=1,$\frac{{S}_{2017}}{2017}$=$\frac{{S}_{2016}}{2016}$+$\frac{1}{2}$,設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,bn=lg$\frac{{a}_{n+1}}{{a}_{n}}$,則T99=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案