如圖,為直角三角形,,以為直徑的圓交于點,點邊的中點,連交圓于點.
(1)求證:四點共圓;
(2)求證:.
解:(1)連接,則                              
的中點,所以                              
,所以,
所以  
四點共圓.                                            
(2) 延長交圓于點,
                                                                                          
,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

 
(本題滿分15分)如圖△ABC為直角三角形,點M在y軸上,且,點C在x軸上移動, (I)求點B的軌跡E的方程;(II)過點的直線l與曲線E交于P、Q兩點,

的夾角為

的取值范圍;   (III)設以點N(0,m)為圓心,以

半徑的圓與曲線E在第一象限的交點H,若圓在點H處的

切線與曲線E在點H處的切線互相垂直,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 
(本題滿分15分)如圖△ABC為直角三角形,點M在y軸上,且,點C在x軸上移動, (I)求點B的軌跡E的方程;(II)過點的直線l與曲線E交于P、Q兩點,

的夾角為

的取值范圍;   (III)設以點N(0,m)為圓心,以

半徑的圓與曲線E在第一象限的交點H,若圓在點H處的

切線與曲線E在點H處的切線互相垂直,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省高三年級第四次四校聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分10分)選修4-1:幾何證明與選講

如圖,為直角三角形,,以為直徑的圓交于點,點邊的中點,連交圓于點.

(1)求證:四點共圓;

(2)求證:.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省高三第四次四校聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

 (本題滿分10分)選修4-1:幾何證明與選講

如圖,為直角三角形,,以為直徑的圓交于點,點邊的中點,連交圓于點.

⑴ 求證:四點共圓;

⑵ 求證:.

 

查看答案和解析>>

同步練習冊答案