【題目】已知函數(shù)f(x)=ln(1+x)﹣ (a>0)
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明: (e為自然對(duì)數(shù)的底數(shù)).
【答案】
(1)解:∵ ,
∴ ,
∵x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),
f′(1)=0即a=2;
(2)解:∵f(x)≥0在[0,+∞)上恒成立,∴f(x)min≥0,
當(dāng)0<a≤1時(shí),f′(x)≥0在[0,+∞)上恒成立,
即f(x)在[0,+∞)上為增函數(shù),
∴f(x)min=f(0)=0成立,即0<a≤1,
當(dāng)a>1時(shí),令f′(x)≥0,則x>a﹣1,
令f′(x)<0,則0≤x<a﹣1,
即f(x)在[0,a﹣1)上為減函數(shù),在(a﹣1,+∞)上為增函數(shù),
∴f(x)min=f(a﹣1)≥0,又f(0)=0>f(a﹣1),則矛盾.
綜上,a的取值范圍為(0,1].
(3)解:要證 ,只需證 ,
兩邊取自然對(duì)數(shù)得, ,
ln ﹣ >0ln(1+ )﹣ >0,
由(2)知a=1時(shí),f(x)=ln(1+x)﹣ 在[0,+∞)單調(diào)遞增,
又 >0,f(0)=0,
∴f( )=ln ﹣ >f(0)=0,
成立.
【解析】(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的方程,解出即可;(2)問(wèn)題轉(zhuǎn)化為f(x)min≥0,根據(jù)函數(shù)的單調(diào)性,通過(guò)討論a的范圍求出a的具體范圍即可;(3)不等式兩邊取對(duì)數(shù),得到ln(1+ )﹣ >0,結(jié)合函數(shù)的單調(diào)性證明即可.
【考點(diǎn)精析】掌握函數(shù)的極值與導(dǎo)數(shù)和函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(2sinx, cosx), =(﹣sinx,2sinx),函數(shù)f(x)= .
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0, ]的最值及所對(duì)應(yīng)的x值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE ;
(2)平面PAC平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線ax+by—4=0和圓x2+y2=4沒(méi)有公共點(diǎn),則過(guò)點(diǎn)(a,b)的直線與橢圓+=1的公共點(diǎn)個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 由a,b的取值來(lái)確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)底面是矩形的四棱錐FABCD的頂點(diǎn)F作EF∥AB,使AB=2EF,且平面ABFE⊥平面ABCD,若點(diǎn)G在CD上且滿足DG=G.
求證:(1)FG∥平面AED;
(2)平面DAF⊥平面BAF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=(log2x)2﹣2alog2x+b(x>0).當(dāng)x= 時(shí),f(x)有最小值﹣1.
(1)求a與b的值;
(2)求滿足f(x)<0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校高三畢業(yè)生報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將他們的體重?cái)?shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù);
(Ⅱ)已知A, 是該校報(bào)考體育專業(yè)的兩名學(xué)生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報(bào)考體育專業(yè)的學(xué)生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學(xué)生共6名,然后再?gòu)倪@6人中抽取體重小于55千克學(xué)生1人,體重不小于70千克的學(xué)生2人組成3人訓(xùn)練組,求A不在訓(xùn)練組且在訓(xùn)練組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn)是直線上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線
(1)當(dāng)的橫坐標(biāo)為2時(shí),求切線方程;
(2)求證:經(jīng)過(guò)三點(diǎn)的圓必過(guò)定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)當(dāng)線段長(zhǎng)度最小時(shí),求四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com