不論實(shí)數(shù)k為何值,直線(k+1)x+y+2-4k=0總過(guò)一定點(diǎn)P,則定點(diǎn)P的坐標(biāo)為
 
考點(diǎn):過(guò)兩條直線交點(diǎn)的直線系方程
專題:直線與圓
分析:化方程為:(x+y+2)+k(x-4)=0,由直線系解可得定點(diǎn)坐標(biāo).
解答: 解:原直線方程可化為:(x+y+2)+k(x-4)=0,
由k的任意性可得
x+y+2=0
x-4=0

解得
x=4
y=-6
,
∴定點(diǎn)P的坐標(biāo)為(4,-6).
故答案為:(4,-6).
點(diǎn)評(píng):本題考查直線恒過(guò)定點(diǎn)問(wèn)題,涉及交點(diǎn)直線系的應(yīng)用,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
4
1
(2x-
1
x
)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某股民購(gòu)買一公司股票10萬(wàn)元,在連續(xù)十個(gè)交易日內(nèi),前5個(gè)交易日,平均每天上漲5%,后5個(gè)交易日內(nèi),平均每天下跌4.9%,則股民的股票盈虧情況(不計(jì)其他成本,精確到元)(  )
A、賺723元
B、賺145元
C、虧145元
D、虧723元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),其中a∈R,e為常數(shù),e≈2.718.
(Ⅰ)若曲線y=f(x)在點(diǎn)(-1,f(-1))處的切線與直線3x+ey+2=0平行,求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(|sinx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

菱形ABCD的邊長(zhǎng)為2,∠A=
π
3
,M為DC的中點(diǎn),若N為菱形內(nèi)任意一點(diǎn)(含邊界),則
AM
AN
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上周期為8的奇函數(shù),在區(qū)間[0,4]上,f(x)=
2x-a,0≤x≤2
bx+16
cx-8
,2<x≤4
,若f(
8
3
)+f(7)=0,則c=( 。
A、1
B、5
C、
16
3
D、
11
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求證:tan2x+
1
tan2x
=
2(3+cos4x)
1-cos4x

(2)若tan2α=2tan2β+1,求證:sin2β=2sin2α-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-2x2+3x+
1
3
,則與f(x)圖象相切的斜率最小的切線方程為( 。
A、2x-y-3=0
B、x+y-3=0
C、x-y-3=0
D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某戰(zhàn)士在打靶中,連續(xù)射擊兩次,事件“至少有一次中靶”的對(duì)立事件是( 。
A、兩次都不中
B、至多有一次中靶
C、兩次都中靶
D、只有一次中靶

查看答案和解析>>

同步練習(xí)冊(cè)答案