已知函數(shù)滿足對任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,則a的取值范圍為( )
A.
B.(0,1)
C.
D.(0,3)
【答案】分析:由(x1-x2)[f(x1)-f(x2)]<0得到函數(shù)f(x)為減函數(shù),列出限制條件解出x即可
解答:解:∵(x1-x2)[f(x1)-f(x2)]<0,
∴f(x)為減函數(shù),
∴0<a<1且a-3<0且a≥(a-3)×0+4a,
∴0<a
故選A
點(diǎn)評:本題考查函數(shù)單調(diào)性,對學(xué)生思維能力有一定的要求,有一定難度
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①對任意實(shí)數(shù)x,有f(2+x)=f(2-x);②對任意2≤x1<x2,有
f(x1)-f(x2
x1-x2
>0,則a=f(2log24),b=f(log
1
2
4),c=f(0)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對任意x,都有f(x+3)=f(x)成立;②當(dāng)x∈[0,
3
2
]
f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時,f(x)>1,且對任意的實(shí)數(shù)x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1f(-2-an)
(n∈N*)
,則a2010的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)f對任意實(shí)數(shù)x滿足f(x+4)+f(x-4)=f(x).所有這樣的函數(shù)f均為周期函數(shù),且它們有一個最小的公共周期p,p是


  1. A.
    8
  2. B.
    12
  3. C.
    16
  4. D.
    24

查看答案和解析>>

同步練習(xí)冊答案