若點(diǎn)在橢圓上,、分別是橢圓的兩焦點(diǎn),且,則的面積是 ( )
2 1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題
(本小題滿分16分) 如圖,在平面直角坐標(biāo)系中,已知點(diǎn)為橢圓
的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .
(1)求直線的方程; (2)求直線被過三點(diǎn)的圓截得的弦長;
(3)是否存在分別以為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不
存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年山東省青島市高考模擬練習(xí)題(一)數(shù)學(xué)(理) 題型:解答題
(本小題滿分14分)已知拋物線的焦點(diǎn)以及橢圓的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓上.
(Ⅰ)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線交拋物線于、兩不同點(diǎn),交軸于點(diǎn),已知為定值.
(Ⅲ)直線交橢圓于兩不同點(diǎn),在軸的射影分別為,,若點(diǎn)滿足:,證明:點(diǎn)在橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省等四校高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題
.(本小題滿分12分)
已知橢圓:,分別為左,右焦點(diǎn),離心率為,點(diǎn)在橢圓上,, ,過與坐標(biāo)軸不垂直的直線交橢圓于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在線段上是否存在點(diǎn),使得以線段為鄰邊的四邊形是菱形?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆度哈爾濱市下學(xué)期高二期末考試文科數(shù)學(xué)試卷 題型:選擇題
已知雙曲線的左、右焦點(diǎn)分別為、,點(diǎn)在雙曲線的右支上,直線為過且切于雙曲線的直線,且平分,過作與直線平行的直線交于點(diǎn),則,利用類比推理:若橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,直線為過且切于橢圓的直線,且平分的外角,過作與直線平行的直線交于點(diǎn),則的值為 ( )
(A) (B) (C) (D)無法確定[來
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若點(diǎn)在橢圓上,兩個(gè)焦點(diǎn)分別為F1、F2且滿足,則實(shí)數(shù)t的取值范圍為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com