【題目】在平面直角坐標(biāo)系中,曲線的方程為,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點,點是曲線上的動點,為線段的中點.

1)寫出曲線的參數(shù)方程,并求出點的軌跡的直角坐標(biāo)方程;

2)已知點,直線與曲線的交點為,若線段的中點為,求線段長度.

【答案】1為參數(shù));;(2.

【解析】

1)根據(jù)圓的直角坐標(biāo)方程寫出曲線的參數(shù)方程,求出點的坐標(biāo),利用消參法求出點的軌跡的直角坐標(biāo)方程;

(2)將的參數(shù)方程為參數(shù))代入曲線的直角坐標(biāo)方程得,再利用直線參數(shù)方程的幾何意義求解.

1的參數(shù)方程為為參數(shù)).

設(shè),所以,即的參數(shù)方程為為參數(shù)),化簡為直角坐標(biāo)方程為.

所以點的軌跡的直角坐標(biāo)方程為.

2)直線的直角坐標(biāo)方程為,易知直線過點

設(shè)的參數(shù)方程為參數(shù)),將其代入曲線的直角坐標(biāo)方程得,

設(shè)對應(yīng)的參數(shù)分別為,

所以

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對線上教育是否滿意與性別有關(guān)

滿意

不滿意

總計

男生

女生

合計

120

2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棱臺的三視圖與直觀圖如圖所示.

(1)求證:平面平面;

(2)在線段上是否存在一點,使與平面所成的角的正弦值為?若存在,指出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線處的切線平行于直線

1)求a的值;

2)求函數(shù)的單調(diào)區(qū)間;

3)已知函數(shù)圖象上不同的兩點,試比較的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) ,).

1)若展開式中第5項與第7項的系數(shù)之比為38,求k的值;

2)設(shè)),且各項系數(shù),,,互不相同.現(xiàn)把這個不同系數(shù)隨機排成一個三角形數(shù)陣:第11個數(shù),第22個數(shù),,第nn個數(shù).設(shè)是第i列中的最小數(shù),其中,且i.記的概率為.求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求的單調(diào)區(qū)間;

2)設(shè)曲線軸正半軸的交點為,曲線在點處的切線方程為,求證:對于任意的實數(shù),都有;

3)若方程為實數(shù))有兩個實數(shù)根,,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A、B兩人進(jìn)行一局圍棋比賽,A獲得的概率為0.8,若采用三局兩勝制舉行一次比賽,現(xiàn)采用隨機模擬的方法估計B獲勝的概率.先利用計算器或計算機生成0到9之間取整數(shù)值的隨機數(shù),用0,1,2,3,4,5,6,7表示A獲勝;8,9表示B獲勝,這樣能體現(xiàn)A獲勝的概率為0.8.因為采用三局兩勝制,所以每3個隨機數(shù)作為一組.

例如,產(chǎn)生30組隨機數(shù):034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,據(jù)此估計B獲勝的概率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種新型病毒的傳染能力很強,給人們生產(chǎn)和生活帶來很大的影響,所以創(chuàng)新研發(fā)疫苗成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上這種新型冠狀病毒的疫苗的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:

研發(fā)費用(百萬元)

2

3

6

10

13

14

銷量(萬盒)

1

1

2

2.5

4

4.5

1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分?jǐn)?shù)表示);

2)根據(jù)所求的回歸方程,估計當(dāng)研發(fā)費用為1600萬元時,銷售量為多少?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求圓的極坐標(biāo)方程與直線的直角坐標(biāo)方程;

2)設(shè)直線與圓相交于,兩點,求圓處兩條切線的交點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案