【題目】設(shè)函數(shù).
(1)當(dāng)時,證明: ;
(2)若關(guān)于的方程有且只有一個實根,求實數(shù)的取值范圍.
【答案】(1)證明見解析;(2) 或.
【解析】試題分析:
(1)當(dāng)時,構(gòu)造函數(shù),則,則當(dāng)時, 單調(diào)遞減,當(dāng)時, 單調(diào)遞增.故 ,據(jù)此可得.
(2)構(gòu)造函數(shù),令 ,則,分類討論:
①當(dāng)時, ,此時有一個零點,
②當(dāng)時, 或,
當(dāng)時, 有一個零點,
當(dāng)時, 有一個零點,
當(dāng)時, 有一個零點,
綜上可知,當(dāng)方程有且只有一個實根時, 的取值范圍是或.
試題解析:
(1)當(dāng)時,令,
,
故當(dāng)時, ,所以單調(diào)遞減,
當(dāng)時, ,所以單調(diào)遞增.
故 ,
所以,所以.
(2)令 ,
,
①當(dāng)時, , 與在區(qū)間上的情況如下:
,此時有一個零點,
②當(dāng)時, 或,
當(dāng)時,即時,
與在區(qū)間上的情況如下:
所以極小值為,極大值為,
由的圖象可知有一個零點,
當(dāng)即時,
與在區(qū)間上的情況如下:
所以函數(shù)的極小值為,極大值為,
由的圖象可知有一個零點,
當(dāng),即時,
為單調(diào)遞減函數(shù),由的圖象知有一個零點,
綜上可知,當(dāng)方程有且只有一個實根時, 的取值范圍是或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個頂點均在同一球面上,則該球的體積為( )
A. B. C. D.
【答案】D
【解析】在三棱錐中,因為, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.
點睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進行聯(lián)系,常用補體法補成正方體或長方體進行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù),則的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓經(jīng)過不同的三點在第三象限),線段的中點在直線上.
(Ⅰ)求橢圓的方程及點的坐標(biāo);
(Ⅱ)設(shè)點是橢圓上的動點(異于點且直線分別交直線于兩點,問是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺問政直播節(jié)目首場內(nèi)容是“讓交通更順暢”.A、B、C、D四個管理部門的負(fù)責(zé)人接受問政,分別負(fù)責(zé)問政A、B、C、D四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實施“讓交通更順暢”幾個月來的評價,對每位現(xiàn)場市民都進行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結(jié)果如下面表格所示:
滿意 | 一般 | 不滿意 | |
A部門 | 50% | 25% | 25% |
B部門 | 80% | 0 | 20% |
C部門 | 50% | 50% | 0 |
D部門 | 40% | 20% | 40% |
(1)若市民甲選擇的是A部門,求甲的調(diào)查問卷被選中的概率;
(2)若想從調(diào)查問卷被選中且填寫不滿意的市民中再選出2人進行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.
(1)求平面與平面所成二面角的大;
(2)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中, 是正方形, 是梯形, , , 平面且, 分別為棱的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點, 為上的任意一點.
(1)求的取值范圍;
(2)是上異于的兩點,若直線與直線的斜率之積為,證明: 兩點的橫坐標(biāo)之和為常數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com