已知的頂點,點是的內(nèi)部(包括邊界)的一個動點,則的取值是( 。
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
(07年遼寧卷)(14分)
已知正三角形的三個頂點都在拋物線上,其中為坐標原點,設(shè)圓是的內(nèi)接圓(點為圓心)
(I)求圓的方程;
(II)設(shè)圓的方程為,過圓上任意一點分別作圓的兩條切線,切點為,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知四棱錐的底面是正方形,側(cè)棱的中點在底面內(nèi)的射影恰好是正方形的中心,頂點在截面內(nèi)的射影恰好是的重心.
(Ⅰ)求直線與底面所成角的正切值;
(Ⅱ)設(shè),求此四棱錐過點的截面面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省新課程高三上學(xué)期第三次適應(yīng)性測試理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)的三個頂點所對三邊長分別為,已知是的內(nèi)心,過作直線與直線分別交于三點,且,,則.將這個結(jié)論類比到空間:設(shè)四面體ABCD的四個面BCD,ABC,ACD,ABD的面積分別為,內(nèi)切球球心為,過作直線與平面BCD,ABC,ACD,ABD分別交于點,且,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試理科數(shù)學(xué)卷(遼寧) 題型:解答題
(本小題滿分14分)
已知正三角形的三個頂點都在拋物線上,其中為坐標原點,設(shè)圓是的內(nèi)接圓(點為圓心)
(I)求圓的方程;
(II)設(shè)圓的方程為,過圓上任意一點分別作圓的兩條切線,切點為,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
己知在銳角ΔABC中,角所對的邊分別為,且
(I )求角大;
(II)當(dāng)時,求的取值范圍.
20.如圖1,在平面內(nèi),是的矩形,是正三角形,將沿折起,使如圖2,為的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。
(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。
21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點
(1)求橢圓C的方程;
(2)求三角形MNT的面積的最大值
22. 已知函數(shù) ,
(Ⅰ)若在上存在最大值與最小值,且其最大值與最小值的和為,試求和的值。
(Ⅱ)若為奇函數(shù):
(1)是否存在實數(shù),使得在為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;
(2)如果當(dāng)時,都有恒成立,試求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com