11.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點(diǎn)頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(I)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
(Ⅱ)若對年齡在[5,15)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?參考數(shù)據(jù):P(K2≥3.841)=0.050,P(K2≥6.635)=0.010,P(K2≥10.828)=0.001  
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (Ⅰ)根據(jù)統(tǒng)計(jì)數(shù)據(jù),可得2×2列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算K2的值,即可得到結(jié)論;
(Ⅱ)利用列舉法確定基本事件的個(gè)數(shù),即可得出恰好兩人都支持“生育二胎放開”的概率.

解答 解:(Ⅰ)2乘2列聯(lián)表

年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù) 合計(jì)
支持a=3c=29  32
不支持b=7d=11  18
合  計(jì)1040  50
…(2分)
K2=$\frac{50×(3×11-7×29)^{2}}{10×40×32×18}$≈6.27<6.635…(4分)
所以沒有99%的把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異.…(5分)
(Ⅱ)設(shè)年齡在[5,15)中支持“生育二胎”的4人分別為a,b,c,d,不支持“生育二胎”的人記為M,…(6分)
則從年齡在[5,15)的被調(diào)查人中隨機(jī)選取兩人所有可能的結(jié)果有:(a,b),(a,c),(a,d),(a,M),(b,c),(b,d),(b,M),(c,d),(c,M),(d,M).…(8分)
設(shè)“恰好這兩人都支持“生育二胎””為事件A,…(9分)
則事件A所有可能的結(jié)果有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),
∴P(A)=$\frac{6}{10}$=$\frac{3}{5}$.…(11分)
所以對年齡在[5,15)的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查時(shí),恰好這兩人都支持“生育二胎”的概率為$\frac{3}{5}$.…(12分)

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn),考查概率的計(jì)算,考查學(xué)生的閱讀與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{2}$sin($\frac{π}{4}$-3x)+2.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若x∈[$\frac{5π}{2}$,$\frac{17π}{6}$],求f(x)的值域;
(3)寫出f(x)的圖象經(jīng)過怎樣的變換可以得到y(tǒng)=sinx的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在R上的函數(shù)f(x),已知y=f(x+2)是奇函數(shù),當(dāng)x>2時(shí),f(x)單調(diào)遞增,若x1+x2>4且(x1-2)•(x2-2)<0,x1+x2<4且(x1-2)•(x2-2)<0,則f(x1)+f(x2)值( 。
A.恒大于0B.恒小于0C.可正可負(fù)D.可能為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.給出求解方程組$\left\{\begin{array}{l}{2x+y=7①}\\{4x+5y=11②}\end{array}\right.$的一個(gè)算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2≤3x+10},B={x|a+1≤x≤2a+1}.
(1)若a=3,求(∁RA)∪B;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a=$\int_{-1}^1{\sqrt{1-{x^2}}dx}$,則${[{(a+2-\frac{π}{2})x-\frac{1}{x}}]^6}$展開式中的常數(shù)項(xiàng)為-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.“若a+b+c=3,則a2+b2+c2≥3”的否命題是若a+b+c≠3,則a2+b2+c2<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系中,已知圓N的圓心N(3,4),且過點(diǎn)A(0,4).
(1)求圓N的方程;
(2)若過點(diǎn)D(3,6)的直線l被圓N所截得的弦長等于$4\sqrt{2}$,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為$\sqrt{2}$的正方形,AA1=3,E是AA1的中點(diǎn),過C1作C1F⊥平面BDE與平面ABB1A1交于點(diǎn)F,則$\frac{AF}{{A{A_{1}}}}$等于( 。
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案