已知直線l:
x=1
y=1+t
(t為參數(shù))的傾斜角是( 。
分析:化參數(shù)方程為普通方程,求出斜率,即可求得傾斜角.
解答:解:化參數(shù)方程為普通方程,可得x=1,
則直線的斜率不存在,故傾斜角為
π
2

故選D.
點評:本題考查直線的斜率與傾斜角的關(guān)系,解題的關(guān)鍵是化參數(shù)方程為普通方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湛江一模)(坐標(biāo)系與參數(shù)方程選做題)已知直線l的方程為
x=t-1
y=t+1
(t為參數(shù)),以坐標(biāo)原點為極點,x軸正方向為極軸的極坐標(biāo)中,圓的極坐標(biāo)方程為ρ=2,則l與該圓相交所得弦的弦長為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的單位長度.已知直線l經(jīng)過點P(1,1),傾斜角α=
π
6

(I)寫出直線l的參數(shù)方程是
x=
3
t+1
y=t+1
(t為參數(shù)),
x=
3
t+1
y=t+1
(t為參數(shù)),

(II)設(shè)l與圓ρ=2相交與兩點A、B,求點P到A、B兩點的距離之積是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:
x=2+t
y=-2-t
(t為參數(shù))與圓C:
x=2cosθ+1
y=2sinθ
(θ為參數(shù)),則直線l的傾斜角及圓心C的直角坐標(biāo)分別是(  )
A、
π
4
,(1,0)
B、
π
4
,(-1,0)
C、
4
,(1,0)
D、
4
,(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l:
x=1
y=1+t
(t為參數(shù))的傾斜角是(  )
A.
π
6
B.
π
4
C.
π
3
D.
π
2

查看答案和解析>>

同步練習(xí)冊答案