15.已知正方形ABCD的邊長為1,若在正方形內(nèi)(包括邊界)任取一點M,則△ABM的面積不小于$\frac{1}{8}$的概率是( 。
A.$\frac{3}{8}$B.$\frac{1}{2}$C.$\frac{5}{8}$D.$\frac{3}{4}$

分析 本題是一個等可能事件的概率,以AB為底邊,要使面積S≥$\frac{1}{8}$,則三角形的高要h≥$\frac{1}{4}$,高即為p點到AB的距離,得到結(jié)果.

解答 解:由題意知本題是一個等可能事件的概率,
以AB為底邊,要使面積S≥$\frac{1}{8}$,則三角形的高要h≥$\frac{1}{4}$,高即為p點到AB的距離,
∴概率為$\frac{3}{4}$,
故選:D.

點評 本題考查等可能事件的概率,本題解題的關(guān)鍵是理解三角形的面積的求法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知隨機變量ξ的分布列為:
ξ-101
P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
又變量η=4ξ+3,則η的期望是( 。
A.$\frac{7}{2}$B.$\frac{5}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖在正方體中
(1)求異面直線BC1與CD1所成的角;
(2)求直線D1B與底面ABCD所成角的正弦值;
(3)求二面角D1-AC-D大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方體,PD=CD=2,E、F分別是AB、PB的中點
(1)求證:EF⊥CD;
(2)求DB與平面DEF所成角的大;
(3)在平面PAD內(nèi)求一點G,使GF⊥平面PCB,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實數(shù)a和b是區(qū)間[0,1]內(nèi)任意兩個數(shù),則使b<a2的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機在這兩條流水線上各抽取40件產(chǎn)品作為樣本.經(jīng)統(tǒng)計,得到關(guān)于產(chǎn)品重量的樣本頻率分布直方圖和樣本頻數(shù)分布表:
乙流水線
產(chǎn)品重量(單位:克)
頻數(shù)
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
已知產(chǎn)品的重量合格標(biāo)準(zhǔn)為:重量值落在(495,510]內(nèi)的產(chǎn)品為合格品;否則為不合格品.
(1)從甲流水線樣本的合格品中任意取2件,求重量值落在(505,510]的產(chǎn)品件數(shù)X的分布列;
(2)從乙流水線中任取2件產(chǎn)品,試根據(jù)樣本估計總體的思想,求其中合格品的件數(shù)Y的數(shù)學(xué)期望;
(3)從甲、乙流水線中各取2件產(chǎn)品,用ξ表示“甲流水線合格品數(shù)與乙流水線合格品數(shù)的差的絕對值”,并用A表示事件“關(guān)于x的一元二次方程2x2+2ξx+ξ=0沒有實數(shù)解”. 試根據(jù)樣本估計總體的思想,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.同時擲六個面分別標(biāo)有數(shù)字1、2、3、4、5、6的質(zhì)地均勻和大小相同的兩枚正方形骰子,計算向上的點數(shù)之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.討論函數(shù)f(x)的單調(diào)性;
(2)已知函數(shù)f (x)=lnx,g(x)=ex.設(shè)直線l為函數(shù) y=f (x) 的圖象上一點A(x0,f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個?,若沒有,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,將菱形ABCD沿對角線BD折起,使得C點至C′,E點 在線段AC′上,若二面角A-BD-E與二面角E-BD-C′的大小分別為和45°和30°,則$\frac{AE}{EC′}$=( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案