一塊形狀為直角三角形的鐵皮,兩直角邊長分別為40 cm、60 cm,現(xiàn)要將它剪成一個(gè)矩形,并以此三角形的直角為矩形的一個(gè)角,則矩形的最大面積是________cm2.
600
設(shè)直角邊為40 cm和60 cm上的矩形邊長分別為x cm、y cm,則,解得y=60-x.矩形的面積Sxyx=-(x-20)2+600,當(dāng)x=20時(shí)矩形的面積最大,此時(shí)S=600.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數(shù)g(x)=xf(x)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a=-1時(shí),證明方程f(x)=2x3-1僅有一個(gè)實(shí)數(shù)根;
(3)當(dāng)x∈[0,1]時(shí),試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2bxc(b,c∈R),對(duì)任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2
(2)若對(duì)滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)是奇函數(shù),(其中)
(1)求實(shí)數(shù)m的值;
(2)在時(shí),討論函數(shù)f(x)的增減性;
(3)當(dāng)x時(shí),f(x)的值域是(1,),求n與a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x+2x,g(x)=x+lnx的零點(diǎn)分別為x1,x2,則x1,x2的大小關(guān)系是(  )
A.x1<x2B.x1>x2
C.x1=x2D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),則b的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1 000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(1)若建立函數(shù)yf(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,與函數(shù)y定義域相同的函數(shù)為(  ).
A.yB.yC.yxexD.y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則=         .

查看答案和解析>>

同步練習(xí)冊答案