已知雙曲線的右焦點(diǎn)為F,過(guò)F作雙曲線一條漸近線的垂線,垂足為A,過(guò)A作x軸的垂線,B為垂足,且數(shù)學(xué)公式(O為原點(diǎn)),則此雙曲線的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    數(shù)學(xué)公式
B
分析:設(shè)出雙曲線方程,確定A的坐標(biāo),利用過(guò)F作雙曲線一條漸近線的垂線,垂足為A,建立方程,即可求得雙曲線的離心率.
解答:設(shè)雙曲線方程為(a>0,b>0),F(xiàn)(c,0),則B(,0)
雙曲線的一條漸近線方程為y=x,∴A(,
∵過(guò)F作雙曲線一條漸近線的垂線,垂足為A,

∴b2=2a2
∴c2-a2=2a2
∴c=a
∴e==
故選B.
點(diǎn)評(píng):本題是對(duì)雙曲線的漸近線以及離心率的綜合考查,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則此雙曲線的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論:
①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
;
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F(3,0),且以直線x=1為右準(zhǔn)線.求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題,其中所有正確命題的序號(hào)為
①②
①②

①當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P(-2,3);
②已知雙曲線的右焦點(diǎn)為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點(diǎn)坐標(biāo)為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的右焦點(diǎn)為F,過(guò)F作雙曲線一條漸近線的垂線,垂足為A,過(guò)A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點(diǎn)),則此雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案