【題目】已知兩點(diǎn)M和N分別在直線y=mx和y=﹣mx(m>0)上運(yùn)動(dòng),且|MN|=2,動(dòng)點(diǎn)p滿足: (O為坐標(biāo)原點(diǎn)),點(diǎn)P的軌跡記為曲線C. (I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過(guò)點(diǎn)(0,1)作直線l與曲線C交于不同的兩點(diǎn)A、B,若對(duì)于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.
【答案】解:(I)由 ,得P是MN的中點(diǎn). 設(shè)P(x,y),M(x1 , mx1),N(x2 , ﹣mx2)依題意得:
消去x1 , x2 , 整理得 .
當(dāng)m>1時(shí),方程表示焦點(diǎn)在y軸上的橢圓;
當(dāng)o<m<1時(shí),方程表示焦點(diǎn)在x軸上的橢圓;
當(dāng)m=1時(shí),方程表示圓.
(II)由m>1,焦點(diǎn)在y軸上的橢圓,直線l與曲線c恒有兩交點(diǎn),
因?yàn)橹本斜率不存在時(shí)不符合題意,
可設(shè)直線l的方程為y=kx+1,直線與橢圓的交點(diǎn)為A(x1 , y1),B(x2 , y2).
(m4+k2)x2+2kx+1﹣m2=0
,
要使∠AOB為銳角,則有
∴x1x2+y1y2=
即m4﹣(k2+1)m2+1>0,
可得 ,對(duì)于任意m>1恒成立.
而 ,∴K2+1≤2,﹣1≤k≤1
所以滿足條件的k的取值范圍是[﹣1.1]
【解析】(I)根據(jù)題意可判斷出P是MN的中點(diǎn).設(shè)出P,M,N的坐標(biāo),根據(jù)題意聯(lián)立方程求得 ,然后對(duì)m>1,o<m<1和m=1對(duì)方程表示出曲線進(jìn)行分類討論.(II)設(shè)出直線l的方程,與橢圓的方程聯(lián)立消去y,利用韋達(dá)定理表示出x1+x2和x1x2 , 利用直線方程表示出y1y2 , 要使∠AOB為銳角,需 ,利用向量的基本運(yùn)算整理得 ,利用基本不等式求得 進(jìn)而求得k的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,集合
當(dāng)時(shí),求集合和集合B;
若集合為單元素集,求實(shí)數(shù)m的取值集合;
若集合的元素個(gè)數(shù)為個(gè),求實(shí)數(shù)m的取值集合
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為比較甲、乙兩地某月14時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】張三同學(xué)從每年生日時(shí)對(duì)自己的身高測(cè)量后記錄如表:
(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,)
(1)求身高關(guān)于年齡的線性回歸方程;(可能會(huì)用到的數(shù)據(jù):(cm))
(2)利用(1)中的線性回歸方程,分析張三同學(xué)歲起到歲身高的變化情況,如 歲之前都符合這一變化,請(qǐng)預(yù)測(cè)張三同學(xué) 歲時(shí)的身高。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一支車隊(duì)有輛車,某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù)。第一輛車于下午時(shí)出發(fā),第二輛車于下午時(shí)分出發(fā),第三輛車于下午時(shí)分出發(fā),以此類推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車,并都在下午時(shí)停下來(lái)休息.
到下午時(shí),最后一輛車行駛了多長(zhǎng)時(shí)間?
如果每輛車的行駛速度都是,這個(gè)車隊(duì)當(dāng)天一共行駛了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一支車隊(duì)有輛車,某天依次出發(fā)執(zhí)行運(yùn)輸任務(wù)。第一輛車于下午時(shí)出發(fā),第二輛車于下午時(shí)分出發(fā),第三輛車于下午時(shí)分出發(fā),以此類推。假設(shè)所有的司機(jī)都連續(xù)開(kāi)車,并都在下午時(shí)停下來(lái)休息.
到下午時(shí),最后一輛車行駛了多長(zhǎng)時(shí)間?
如果每輛車的行駛速度都是,這個(gè)車隊(duì)當(dāng)天一共行駛了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點(diǎn),D與F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若GD⊥EF,則線段DF的長(zhǎng)度的取值范圍為( )
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若,函數(shù)的最大值為,最小值為,求的值;
(2)當(dāng)時(shí),函數(shù)的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)給出以下四個(gè)命題:
①已知中,角A,B,C的對(duì)邊為a,b,c,當(dāng),,時(shí),滿足條件的三角形共有1個(gè);
②已知中,角A,B,C的對(duì)邊為a,b,c,若三角形,這個(gè)三角形的最大角是;
③設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,若,,則;
④設(shè)是兩條不同的直線,,是兩個(gè)不同的平面,若,,則
其中正確的序號(hào)是__________(寫(xiě)出所有正確說(shuō)法的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com